• Title/Summary/Keyword: temporal network

Search Result 613, Processing Time 0.026 seconds

Context-Awareness Service Modeling of Realtime Sensor Network using Enhanced Petri-Net (Enhanced Petri-Net을 이용한 실시간 센서 네트워크의 상황 정보 서비스 모델링)

  • Lee, Jae-Bong;Lee, Hong-Ro
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.28-36
    • /
    • 2010
  • Some context is characterized by a single event in computing environment, but many other contexts are determined by a lot of things which occur with a space and a time. The Realtime Sensor Network context-awareness service that interacts with the physical space can have property such as time. A methodology that is specified the relationship between the contexts and the service needs to be developed to Realtime context-awareness deal with spatio-temporal. In this paper, we propose an approach which should include spatio-temporal property in the context model, and verify its effectiveness using enhanced Petri-Net. The context-awareness service modeling of Realtime Sensor Network is discussed the properties of model such as basic Petri-Net, patterned Petri-Net, or Spatio-temporal Petri-Net. The proposed methodology demonstrated using an example that is SAEMANGUEM warming watching system. The use of Spatio-temporal Petri-Net will contribute not only to develop the application but also to model the spatio-temporal context awareness.

Collective Prediction exploiting Spatio Temporal correlation (CoPeST) for energy efficient wireless sensor networks

  • ARUNRAJA, Muruganantham;MALATHI, Veluchamy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2488-2511
    • /
    • 2015
  • Data redundancy has high impact on Wireless Sensor Network's (WSN) performance and reliability. Spatial and temporal similarity is an inherent property of sensory data. By reducing this spatio-temporal data redundancy, substantial amount of nodal energy and bandwidth can be conserved. Most of the data gathering approaches use either temporal correlation or spatial correlation to minimize data redundancy. In Collective Prediction exploiting Spatio Temporal correlation (CoPeST), we exploit both the spatial and temporal correlation between sensory data. In the proposed work, the spatial redundancy of sensor data is reduced by similarity based sub clustering, where closely correlated sensor nodes are represented by a single representative node. The temporal redundancy is reduced by model based prediction approach, where only a subset of sensor data is transmitted and the rest is predicted. The proposed work reduces substantial amount of energy expensive communication, while maintaining the data within user define error threshold. Being a distributed approach, the proposed work is highly scalable. The work achieves up to 65% data reduction in a periodical data gathering system with an error tolerance of 0.6℃ on collected data.

Query Processing Systems in Sensor Networks (센서 네트워크에서 질의 처리 시스템)

  • Kim, Jeong-Joon;Chung, Sung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.137-142
    • /
    • 2017
  • Recently, along with the development of IoT technology, technologies for wirelessly sensing various data, such as sensor nodes, RFID, CCTV, smart phones, etc., have rapidly developed, and in the field of multiple applications, to utilize sensor network related technology Have been actively pursued in various fields. Therefore, as GeoSensor utilization increases, query processing systems for efficiently processing 2D data such as spatial sensor data are actively researched. However, existing spatial query processing systems do not support a spatial-temporal data type and a spatial-temporal operator for processing spatial-temporal sensor data. Therefore, they are inadequate for processing spatial-temporal sensor data like GeoSensor. Accordingly, this paper developed a spatial-temporal query processing system, for efficient spatial-temporal query processing of spatial-temporal sensor data in a sensor network.

A Multimedia Presentation Authoring System based on Conceptual Temporal Relations (개념적 시간관계 기반의 멀티미디어 프레젠테이션 저작 시스템)

  • 노승진;장진희;성미영
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.3
    • /
    • pp.266-277
    • /
    • 2003
  • Every conceptual temporal rat relationship can be described using one of seven relations (before, meets, overlaps, during, starts, finishes, and equals ). The conceptual representation provides an efficient means for our multimedia authoring system to automatically fill in the necessary timing details. We developed a multimedia Presentation authoring system that supports a mechanism for conceptually representing the temporal relations of different media. Among the many editors that make up our system, the temporal relation editor provides users with an intuitive mechanism for representing the conceptual flow of a presentation by simple and direct graphical manipulations. Our system is based on the SMIL(Synchronized Multimedia Integration Language). The conceptual temporal relation editor and other editors of our system exchange their information in real-time and automatically generate SMIL codes through the SMIL Object Manager. Our system uses TRN(Temporal Relation Network) as its internal multimedia presentation representation. The TRN corresponds exactly to the structure seen in the graphical representation of the presentation. A parallel relationship found in a TRN can be collapsed into a single synchronization block. This facilitates the determination of the playing time of each component and can be the basic unit for reusability of already prepared blocks of presentation code.

Artificial neural network for classifying with epilepsy MEG data (뇌전증 환자의 MEG 데이터에 대한 분류를 위한 인공신경망 적용 연구)

  • Yujin Han;Junsik Kim;Jaehee Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.139-155
    • /
    • 2024
  • This study performed a multi-classification task to classify mesial temporal lobe epilepsy with left hippocampal sclerosis patients (left mTLE), mesial temporal lobe epilepsy with right hippocampal sclerosis (right mTLE), and healthy controls (HC) using magnetoencephalography (MEG) data. We applied various artificial neural networks and compared the results. As a result of modeling with convolutional neural networks (CNN), recurrent neural networks (RNN), and graph neural networks (GNN), the average k-fold accuracy was excellent in the order of CNN-based model, GNN-based model, and RNN-based model. The wall time was excellent in the order of RNN-based model, GNN-based model, and CNN-based model. The graph neural network, which shows good figures in accuracy, performance, and time, and has excellent scalability of network data, is the most suitable model for brain research in the future.

Video Quality Assessment based on Deep Neural Network

  • Zhiming Shi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2053-2067
    • /
    • 2023
  • This paper proposes two video quality assessment methods based on deep neural network. (i)The first method uses the IQF-CNN (convolution neural network based on image quality features) to build image quality assessment method. The LIVE image database is used to test this method, the experiment show that it is effective. Therefore, this method is extended to the video quality assessment. At first every image frame of video is predicted, next the relationship between different image frames are analyzed by the hysteresis function and different window function to improve the accuracy of video quality assessment. (ii)The second method proposes a video quality assessment method based on convolution neural network (CNN) and gated circular unit network (GRU). First, the spatial features of video frames are extracted using CNN network, next the temporal features of the video frame using GRU network. Finally the extracted temporal and spatial features are analyzed by full connection layer of CNN network to obtain the video quality assessment score. All the above proposed methods are verified on the video databases, and compared with other methods.

Modeling and Control of Intersection Network using Real-Time Fuzzy Temporal Logic Framework (실시간 퍼지 시간논리구조를 이용한 교차로 네트워크의 모델링과 제어)

  • Kim, Jung-Chul;Lee, Won-Hyok;Kim, Jin-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.352-357
    • /
    • 2007
  • This paper deals with modeling method and application of Fuzzy Discrete Event System(FDES). FDES have characteristics which Crisp Discrete Event System(CDES) can't deals with and is constituted with the events that is determined by vague and uncertain judgement like biomedical or traffic control. We proposed Real-time Fuzzy Temporal Logic Framework(RFTLF) to model Fuzzy Discrete Event System. It combines Temporal Logic Framework with Fuzzy Theory. We represented the model of traffic signal systems for intersection to have the property of Fuzzy Discrete Event System with Real-time Fuzzy Temporal Logic Framework and designed a traffic signal controller for smooth traffic flow. Moreover, we proposed the method to find the minimum-time route to reach the desired destination with information obtained in each intersection. In order to evaluate the performance of Real-time Fuzzy Temporal Logic Framework model proposed in this paper, we simulated unit-time extension traffic signal controller model of the latest signal control method on the same condition.

Depth Image-Based Human Action Recognition Using Convolution Neural Network and Spatio-Temporal Templates (시공간 템플릿과 컨볼루션 신경망을 사용한 깊이 영상 기반의 사람 행동 인식)

  • Eum, Hyukmin;Yoon, Changyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1731-1737
    • /
    • 2016
  • In this paper, a method is proposed to recognize human actions as nonverbal expression; the proposed method is composed of two steps which are action representation and action recognition. First, MHI(Motion History Image) is used in the action representation step. This method includes segmentation based on depth information and generates spatio-temporal templates to describe actions. Second, CNN(Convolution Neural Network) which includes feature extraction and classification is employed in the action recognition step. It extracts convolution feature vectors and then uses a classifier to recognize actions. The recognition performance of the proposed method is demonstrated by comparing other action recognition methods in experimental results.

A Study on the Voice-Controlled Wheelchair using Spatio-Temporal Pattern Recognition Neural Network (Spatio-Temporal Pattern Recognition Neural Network를 이용한 전동 휠체어의 음성 제어에 관한 연구)

  • Baek, S.W.;Kim, S.B.;Kwon, J.W.;Lee, E.H.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.90-93
    • /
    • 1993
  • In this study, Korean speech was recognized by using spatio-temporal recognition neural network. The subjects of speech are numeric speech from zero to nine and basic command which might be used for motorized wheelchair developed it own Lab. Rabiner and Sambur's method of speech detection was used in determining end-point of speech, speech parameter was extracted by using LPC 16 order. The recognition rate was over 90%.

  • PDF

Index based on Constraint Network for Spatio-Temporal Aggregation of Trajectory in Spatial Data Warehouse

  • Li Jing Jing;Lee Dong-Wook;You Byeong-Seob;Oh Young-Hwan;Bae Hae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1529-1541
    • /
    • 2006
  • Moving objects have been widely employed in traffic and logistic applications. Spatio-temporal aggregations mainly describe the moving object's behavior in the spatial data warehouse. The previous works usually express the object moving in some certain region, but ignore the object often moving along as the trajectory. Other researches focus on aggregation and comparison of trajectories. They divide the spatial region into units which records how many times the trajectories passed in the unit time. It not only makes the storage space quite ineffective, but also can not maintain spatial data property. In this paper, a spatio-temporal aggregation index structure for moving object trajectory in constrained network is proposed. An extended B-tree node contains the information of timestamp and the aggregation values of trajectories with two directions. The network is divided into segments and then the spatial index structure is constructed. There are the leaf node and the non leaf node. The leaf node contains the aggregation values of moving object's trajectory and the pointer to the extended B-tree. And the non leaf node contains the MBR(Minimum Bounding Rectangle), MSAV(Max Segment Aggregation Value) and its segment ID. The proposed technique overcomes previous problems efficiently and makes it practicable finding moving object trajectory in the time interval. It improves the shortcoming of R-tree, and makes some improvement to the spatio-temporal data in query processing and storage.

  • PDF