• Title/Summary/Keyword: temporal distance

Search Result 266, Processing Time 0.032 seconds

Vulnerability Evaluation by Road Link Based on Clustering Analysis for Disaster Situation (재난·재해 상황을 대비한 클러스터링 분석 기반의 도로링크별 취약성 평가 연구)

  • Jihoon Tak;Jungyeol Hong;Dongjoo Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.29-43
    • /
    • 2023
  • It is necessary to grasp the characteristics of traffic flow passing through a specific road section and the topological structure of the road in advance in order to quickly prepare a movement management strategy in the event of a disaster or disaster. It is because it can be an essential basis for road managers to assess vulnerabilities by microscopic road units and then establish appropriate monitoring and management measures for disasters or disaster situations. Therefore, this study presented spatial density, time occupancy, and betweenness centrality index to evaluate vulnerabilities by road link in the city department and defined spatial-temporal and topological vulnerabilities by clustering analysis based on distance and density. From the results of this study, road administrators can manage vulnerabilities by characterizing each road link group. It is expected to be used as primary data for selecting priority control points and presenting optimal routes in the event of a disaster or disaster.

Spatiotemporal characteristics of stroke patients gait (뇌졸중 환자에서 보행의 시공간적 특징)

  • Lee, Sangkwan;Choi, Sanho;Oh, Jaegun;Lee, Ilsuk;Park, Kee-eon;Hong, Haejin;Sung, Kang-keyng
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The following study reviewed the walking patterns of stroke patients with hemiplegia, which is called hemiplegic gait of stroke patients. Focusing is given to the changes in the distance and temporal factors of walking, which is called spatiotemporal characteristics, throughout the walking cycle. First, we introduced the definitions of essential terms related to gait and its measure. Second, we reviewed the spatiotemporal characteristics of hemiplegic gait. A main issue was that hemiplegic gait showed significant deviations from normal healthy gait. Although hemiplegia is primarily associated with unilateral motor disorder, changes in almost all spatiotemporal parameters used to assess walking were evident on both the involved and uninvolved sides of the body. Last, we reviewed the changes of spatiotemporal parameters of hemiplegic gait according to the prognosis or status of stroke patients, which may help to give a specific intervention for rehabilitation of stroke.

  • PDF

Environmental and Socioeconomic Indicators of Virtual Water Trade: A Review

  • Odey, Golden;Adelodun, Bashir;Kim, Sang Hyun;Choi, Kyung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.211-211
    • /
    • 2020
  • The concept of virtual water has been largely applied in the study of regional, national, and global water flows with particular emphasis on water scarcity. Despite water traditionally being managed locally, certain global forces influence the local water resource scarcity/availability and hence virtual water exchanges worldwide. It is therefore of necessity that the significant forces be examined to understand the relationship between available water in a region and the variability and trends in environmental, social, and economic factors that are of utmost importance in the formulation of water resources management policies. This study therefore reviewed recent literature from 2003 - 2019 to determine the significant indicators of virtual water trade at different spatiotemporal levels. The study examined and compared the major approaches to virtual water trade flows accounting, and also identified and discussed policy implications and future research options concerning the analysis of virtual water trade. Available information has shown that virtual water trade is significantly influenced by economic (GDP, Demand-Supply of goods and services), geographical (Distance), institutional (population) and environmental (water availability, arable land, precipitation) factors. Reports further show that the selection of a given approach for virtual water trade flows accounting will depend on the scope of the study, the available datasets, and other research preferences. Accordingly, this study suggests that the adoption of multidisciplinary approaches to virtual water trade, taking into consideration the spatial and temporal variations in water resources availability and the complexity of environmental and socioeconomic factors will be pivotal for establishing the basis for the conservation of water resources worldwide.

  • PDF

Analysis of the Urban Interactions of Seoul Metropolitan Region using Commuting Data and GIS (통근자료와 GIS를 이용한 서울대도시권 도시 간 상호작용 분석)

  • Kim, Jyso;Chang, Hoon;Lim, Up
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.267-273
    • /
    • 2009
  • To predict the urban growth trend and to prevent the metropolitan problems, it is important to track the spatio-temporal changes in the urban spatial structure. Commuting is inevitable and regular activities emerging in the metropolitan region. Therefore, it can be a useful to examine the interregional interaction and the urban spatial change. The purpose of this study is to investigate the urban interaction between Seoul and cities around Seoul Metropolitan Region, and GIS functions helped analysis and visualized results. An analysis of current commuting data using the Gravity Model suggests that the interaction between Seoul and its peripheral cities has been intensified from 1990 to 2000 and that the urban interaction was closely related to the distance. And the southward distribution of the cities having a strong interaction with Seoul accounts for the imbalance in growing of Seoul Metropolitan Region.

Experimental investigation of blocking mechanism for grouting in water-filled karst conduits

  • Zehua Bu;Zhenhao Xu;Dongdong Pan;Haiyan Li;Jie Liu;Zhaofeng Li
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.155-171
    • /
    • 2023
  • Aiming at the grouting treatment of water inflow in karst conduits, a visualized experiment system for conduit-type grouting blocking was developed. Through the improved water supply system and grouting system, and the optimized multisource information monitoring system, the real-time observation of diffusion and deposition of slurry, and the data acquisition of pressure and velocity during the whole process of grouting were realized, which breaks through the problem that the monitoring element is easy to fail due to slurry adhesion in conventional test system. Based on the grouting experiments in static and flowing water, the diffusion and deposition behavior of the quick-setting slurry under different working conditions were analyzed. The temporal and spatial variation behavior of the pressure and velocity were studied, and the blocking mechanism of the grouting were further revealed. The results showed that: (1) Under the flowing water condition, the counter-flow diffusion distance of slurry was negatively correlated with the flow water velocity and the volume ratio of cement and sodium silicate (C-S ratio), and positively correlated with the grouting volume. The slurry deposition thickness was negatively correlated with the flowing water velocity, and positively correlated with the grouting volume and C-S ratio. (2) The pressure increased slowly before blocking of the flowing water and rapidly after blocking in karst conduits. (3) With the continuous progress of grouting, the flowing water velocity decreased slowly first, then significantly, and finally tended to be stable. According to the research results, some engineering recommendations were put forward for the grouting treatment of the conduit-type water inflow disaster, which has been successfully applied in the treatment project of the China Resources Cement (Pingnan) Limestone Mine. This study provided some guidance and reference for the parameter optimization of grouting for the treatment projects of water inflow in karst conduits.

The Effect of Retinal and Perceived Motion Trajectory of Visual Motion Stimulus on Estimated Speed of Motion (운동자극의 망막상 운동거리와 지각된 운동거리가 운동속도 추정에 미치는 영향)

  • Park Jong-Jin;Hyng-Chul O. Li;ShinWoo Kim
    • Korean Journal of Cognitive Science
    • /
    • v.34 no.3
    • /
    • pp.181-196
    • /
    • 2023
  • Size, velocity, and time equivalence are mechanisms that allow us to perceive objects in three-dimensional space consistently, despite errors on the two-dimensional retinal image. These mechanisms work on common cues, suggesting that the perception of motion distance, motion speed, and motion time may share common processing. This can lead to the hypothesis that, despite the spatial nature of visual stimuli distorting temporal perception, the perception of motion speed and the perception of motion duration will tend to oppose each other, as observed for objects moving in the environment. To test this hypothesis, the present study measured perceived speed using Müller-Lyer illusion stimulus to determine the relationship between the time-perception consequences of motion stimuli observed in previous studies and the speed perception measured in the present study. Experiment 1 manipulated the perceived motion trajectory while controlling for the retinal motion trajectory, and Experiment 2 manipulated the retinal motion trajectory while controlling for the perceived motion trajectory. The result is that the speed of the inward stimulus, which is perceived to be shorter, is estimated to be higher than that of the outward stimulus, which is perceived to be longer than the actual distance traveled. Taken together with previous time perception findings, namely that time perception is expanded for outward stimuli and contracted for inward stimuli, this suggests that when the perceived trajectory of a stimulus manipulated by the Müller-Lyer illusion is controlled for, perceived speed decreases with increasing duration and increases with decreasing duration when the perceived distance of the stimulus is constant. This relationship suggests that the relationship between time and speed perceived by spatial cues corresponds to the properties of objects moving in the environment, i.e, an increase in time decreases speed and a decrease in time increases speed when distance remains the same.

Temporal and Spatial Variations of the Cold Waters Occurring in the Eastern Coast of the Korean Peninsula in Summer Season (하계 동해연안역에서 발생하는 냉수역의 시공간적 변동 특성)

  • SUH Young Sang;JANG Lee-Hyun;HWANG Jae Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2001
  • Daily time series of longshore wind at 8 stations, sea surface temperature (SST) at 11 stations in the eastern coast of the Korean peninsula during $1983\~1997$ and the NOAA/AVHRR satellite data during $1990\~1998$ were used in order to study the temporal and spatial variations of the upwelling cold water which occurred in the summer season. The cold water occurred frequently in the eastern coastal waters of Korea such as Soimal, Kijang, Ulgi, Kampo, Pohang, Youngduk, Chukbyun, Chumunjin and Sokcho, During the upwelling cold water phenomenon, SST came down more than $-5^{\circ}C$ in a day. The maximum of the averaged RMS amplitude of daily SST was $5.8^{\circ}C$ along the eastern coast of Korea on Julian day 212 from $1983\~1997$. The cross correlation coefficients were higher than 0.5 between Sokcho and Chumunjin in the northern part of the East Sea, and along Soimal, Kijang, Ulgi, Kampo and Pohang in the southern part of the East Sea. In late July, 1995 the cold water occurred at Ulgi coastal area and extended to Ullung island which is located 250 km off the Ulgi coast. Even though the distance between Soimal and the Ulgi coast area is more than 120 km, the cross correlation coefficient related to the anomalies of SST due to upwelling cold water was the highest (0.7) in the southeastern coastal area of the Korean peninsula. This connection may be due to the cyclonic circulation of the Tsushima Current in this area and the topography of the ocean rather than the local south wind which induced the coastal upwelling.

  • PDF

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

Temporal and Spatial Variations of Precipitation in South Korea for Recent 30 Years (1976-2005) and Geographic Environments (최근 30년간(1976-2005) 우리나라 강수의 시.공간변동과 지리환경)

  • Hong, Ki-Ok;Suh, Myoung-Seok;Rha, Deuk-Kyun
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.433-449
    • /
    • 2006
  • Temporal and spatial variations of precipitation in South Korea are investigated using 60 observation data of the recent 30-years from 1976 to 2005. The area averaged annual precipitation amount is about 1310 mm and shows a strong spatial variation, maximum at the southern and Kyoungki province (>1300 mm) and minimum at the Kyungpook province(<1100 mm). The precipitation days show a strong spatial variation with maximum at the Sobaik mountain region(>100 days) and minimum at the Kyungpook province (<90 days). The interannual variations (IAV) of precipitation amount and days are more significant at the southern and eastern part of Sobaik and Taebaik mountain, and along the Sobaik mountain, respectively. So, the difference of annual precipitation amount reaches to about 800mm between wet and dry years at the southern part of Korean peninsula. Whereas, the IAV of precipitation intensity is strong at the southern and middle part of South Korea with a minimum between two maxima. Also, seasonal variations are closely linked with the geographic environments (elevation, distance from ocean, location relative to the Taebaik mountain). Therefore, maximum and minimum of seasonal variations of precipitation are occurred at the northern inland region (ratio of summer to the annual precipitation (RSAP) is greater than 60%), eastern and southern coastal regions (RSAP is less than 53%),respectively. And the RSAP is slightly increased from 50% to 55% comparing the Ho and Kang (1988). The consistent and strong positive relation between the heavy rainfalls, the ratio of heavy rainfalls to annual precipitation and the annual precipitation indicates that heavy rainfall is more frequent and strong at the maximum annual precipitation region.

Dynamics of Cyanobacterial Toxins in the Downstream River of Lake Suwa (Suwa호 하류하천에서의 남조류 독소의 동태)

  • Kim, Bom-Chul;Park, Ho-Dong;Katagami, Yukimi;Hwang, Soon-Jin;Kim, Ho-Sub
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.45-53
    • /
    • 2001
  • Transport of cyanobacterial toxins (microcystin-LR, -RR, -YR) were assessed from a eutrophic lake, Lake Suwa, through the outflowing river, the Tenryu River, and its irrigation channel branch. Temporal variation of phytoplankton species composition in the river coincided with those of the lake; Microcystis ichthyoblabe dominated from June to July, and M. viridis dominated from August to September. When cyanobacterial bloom occurred, microcystins were continuously detected at the concentration of $0.3{\sim}3.2\;{\mu}g/l$ even at 32 km downstream. The change of the content of three microcystin variants were related both with the total cell density of Microcystis and with the change of Microcystis species composition. When Microcystis ichthyoblabe dominated during July, only microcystin-RR (MC-RR) and -LR (MC-LR) were detected, while when Microcystis viridis dominated between August and October, microcystin-RR,-YR (MC -YR) and -LR were detected. Along 29 km flowing distance (flow time 11 hours) between site 2 and site 5 in the Tenryu River, cyanobacterial density and microcystin concentration were reduced by 73% and 72%, respectively, which is mostly contributed by the dilution effect of tributary waters (61% and 57%, respectively) . In the artificial irrigation channel microcystins and cyanobacterial cells were decreased less than in the natural river. The results indicate that cyanobacterial toxins can be transported far downstream without much removal and give hazards to water usage in downstream of eutrophic lakes with cyanobacterial blooms.

  • PDF