• 제목/요약/키워드: temperature-humidity index

검색결과 294건 처리시간 0.027초

The effect of seasonal thermal stress on milk production and milk compositions of Korean Holstein and Jersey cows

  • Lim, Dong-Hyun;Mayakrishnan, Vijayakumar;Ki, Kwang-Seok;Kim, Younghoon;Kim, Tae-Il
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.567-574
    • /
    • 2021
  • Objective: In this study we investigated the effect of seasonal thermal stress on milk production and milk compositions between Holstein and Jersey dairy cows under the temperate-climate in Korea. Methods: A total of 9 Holstein lactating dairy cows (2.0±0.11 parity) which had a daily milk yield of 29.77±0.45 kg, and days in milk of 111.2±10.29 were selected similarly at the beginning of the experiments in each season. Also, a total of 9 Jersey lactating dairy cows (1.7±0.12 parity) which had a daily milk yield of 20.01±0.43 kg, and days in milk of 114.0±9.74 were selected similarly at the beginning of the experiments. Results: Results showed that the average ambient temperature (℃) and temperature-humidity index (THI) were higher in summer, and were lower in winter (p<0.05). The average relative humidity (RH, %) was higher in autumn than that of other seasons (p<0.05). Milk production was significantly decreased (Holstein 29.02 kg/d and Jersey 19.75 kg/d) in autumn than in other seasons (Holstein 30.14 kg/d and Jersey 20.96 kg/d). However, the milk production was negatively correlated in Holstein cows, and positively correlated in Jersey cows with THI values increased from 16 to 80. In addition, milk yield was increased by 15% in Holstein cows and decreased by 11% in Jersey cows with the THI values increased from 16 to 20. The fat and protein content percentage was significantly higher in Jersey milk than in Holstein milk, furthermore the fat and protein content yield was higher in Jersey cow milk than that of Holstein cow's milk with all THIs. Conclusion: From the study results, we concluded that Jersey cows might be less adaptable to low temperature of the winter, and this would have a negative impact on dairy farmer income since Korea's milk price estimation system places a higher value on milk yield than on milk compositions or sanitary grades.

기후변화 취약성 지수 산출을 위한 한반도 관측 기후 특성 분석 (Analysis of Climate Characteristics Observed over the Korean Peninsula for the Estimation of Climate Change Vulnerability Index)

  • 남기표;강정언;김철희
    • 환경영향평가
    • /
    • 제20권6호
    • /
    • pp.891-905
    • /
    • 2011
  • Climate vulnerability index is usually defined as a function of the climate exposure, sensitivity, and adaptive capacity, which requires adequate selection of proxy variables of each variable. We selected and used 9 proxy variables related to climate exposure in the literature, and diagnosed the adequacy of them for application in Korean peninsula. The selected proxy variables are: four variables from temperature, three from precipitation, one from wind speed, and one from relative humidity. We collected climate data over both previous year (1981~2010) and future climate scenario (A1B scenario of IPCC SERES) for 2020, 2050, and 2100. We introduced the spatial and temporal diagnostic statistical parameters, and evaluated both spatial and time variabilities in the relative scale. Of 9 proxy variables, effective humidity indicated the most sensitive to climate change temporally with the biggest spatial variability, implying a good proxy variable in diagnostics of climate change vulnerability in Korea. The second most sensitive variable is the frequency of strong wind speed with a decreasing trend, suggesting that it should be used carefully or may not be of broad utility as a proxy variable in Korea. The A1B scenario of future climate in 2020, 2050 and 2100 matches well with the extension of linear trend of observed variables during 1981~2010, indicating that, except for strong wind speed, the selected proxy variables can be effectively used in calculating the vulnerability index for both past and future climate over Korea. Other local variabilities for the past and future climate in association with climate exposure variables are also discussed here.

A Study on IoT based Real-Time Plants Growth Monitoring for Smart Garden

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권1호
    • /
    • pp.130-136
    • /
    • 2020
  • There are many problems that occur currently in agriculture industries. The problems such as unexpected of changing weather condition, lack of labor, dry soil were some of the reasons that may cause the growth of the plants. Condition of the weather in local area is inconsistent due to the global warming effect thus affecting the production of the crops. Furthermore, the loss of farm labor to urban manufacturing jobs is also the problem in this industry. Besides, the condition for the plant like air humidity, air temperature, air quality index, and soil moisture are not being recorded automatically which is more reason for the need of implementation system to monitor the data for future research and development of agriculture industry. As of this, we aim to provide a solution by developing IoT-based platform along with the irrigation for increasing crop quality and productivity in agriculture field. We aim to develop a smart garden system environment which the system is able to auto-monitoring the humidity and temperature of surroundings, air quality and soil moisture. The system also has the capability of automating the irrigation process by analyzing the moisture of soil and the climate condition (like raining). Besides, we aim to develop user-friendly system interface to monitor the data collected from the respective sensor. We adopt an open source hardware to implementation and evaluate this research.

기후변화 및 폭염대응 증발냉각시스템 적용에 따른 내·외부 열환경 변화 연구 (Thermal Environment Transition of Response Climate Change and Heat Wave Application Evaporative Cooling System)

  • 김정호;김학기;윤용한;권기욱
    • 한국환경과학회지
    • /
    • 제25권9호
    • /
    • pp.1269-1281
    • /
    • 2016
  • This study evaporative cooling system a heat wave climate change and reduction of the inside and outside thermal environment change research. Measurement items included micro meteorological phenomena and measured comfort indices. A micro meteorograph of temperature, relative humidity, surface temperature, and the comfort indices of WBGT, UTCI, and PMV were measured. The difference in inside and outside temperatures were compared for different land types, with the largest difference found in Type A ($4.81^{\circ}C$), followed by Type B ($4.40^{\circ}C$) and Type C ($3.12^{\circ}C$). Relative humidity was about 10.43% higher inside due to water injection by the evaporative cooling system. Surface temperature was inside about $6.60^{\circ}C$ higher than the outside all types. WBGT were Type A ($3.50^{\circ}C$) > Type B ($2.71^{\circ}C$) > Type C ($1.88^{\circ}C$). UTCI was low heat stress inside than outside all types. PMV was analysed Type C for inside predicted percentage of dissatisfied 75%, other types was percentage of dissatisfied 100% by inside and outside. Correlation analysis between land cover type and temperature, surface temperature, pmv, utci. T-test analysed inside and outside temperature difference was significant in all types of land.

상황센서 기반의 밴드를 이용한 건강정보 모니터링 시스템 (Health Information Monitoring System using Context Sensors based Band)

  • 정경용;이영호;류중경
    • 한국콘텐츠학회논문지
    • /
    • 제11권8호
    • /
    • pp.14-22
    • /
    • 2011
  • 헬스케어가 예방의료 중심으로 다변화 되어가는 생활환경 속에서 건강정보를 제공하는 것은 서비스 전략의 중요한 성공요소가 되고 있다. 최근에는 u-헬스케어의 다양한 어플리케이션이 연구자에 의해 제시되고 있다. 본 논문에서는 상황센서 기반의 밴드를 이용한 건강정보 모니터링 시스템을 제안하였다. 제안된 밴드를 착용하여, 건강상태를 수집하고 생체신호를 UMPC로 무선 전송되어 이를 사용자의 위치에 따라 실시간으로 모니터링 할 수 있도록 고안하였다. 체온, 기온, 조도, 습도, 자외선에 따른 건강지수를 제공하기 위해서, 기상청의 RSS로 부터 추출한 다양한 XML 링크를 활용한다. 건강정보는 천식지수, 뇌졸중지수, 피부질환지수, 폐질환지수, 꽃가루농도지수, 도시고온지수의 요소에 따라 분석한다. 제안하는 시스템을 개발하여 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하고자 한다. 따라서 헬스케어에서 서비스의 만족도와 질을 향상시켰다.

Thin Layer Drying Model of Sorghum

  • Kim, Hong-Sik;Kim, Oui-Woung;Kim, Hoon;Lee, Hyo-Jai;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • 제41권4호
    • /
    • pp.357-364
    • /
    • 2016
  • Purpose: This study was performed to define the drying characteristics of sorghum by developing thin layer drying equations and evaluating various grain drying equations. Thin layer drying equations lay the foundation characteristics to establish the thick layer drying equations, which can be adopted to determine the design conditions for an agricultural dryer. Methods: The drying rate of sorghum was measured under three levels of drying temperature ($40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$) and relative humidity (30%, 40%, and 50%) to analyze the drying process and investigate the drying conditions. The drying experiment was performed until the weight of sorghum became constant. The experimental constants of four thin layer drying models were determined by developing a non-linear regression model along with the drying experiment results. Result: The half response time (moisture ratio = 0.5) of drying, which is an index of the drying rate, was increased as the drying temperature was high and relative humidity was low. When the drying temperature was $40^{\circ}C$ at a relative humidity (RH) of 50%, the maximum half response time of drying was 2.8 h. Contrastingly, the maximum half response time of drying was 1.2 h when the drying temperature was $60^{\circ}C$ at 30% RH. The coefficient of determination for the Lewis model, simplified diffusion model, Page model, and Thompson model was respectively 0.9976, 0.9977, 0.9340, and 0.9783. The Lewis model and the simplified diffusion model satisfied the drying conditions by showing the average coefficient of determination of the experimental constants and predicted values of the model as 0.9976 and Root Mean Square Error (RMSE) of 0.0236. Conclusion: The simplified diffusion model was the most suitable for every drying condition of drying temperature and relative humidity, and the model for the thin layer drying is expected to be useful to develop the thick layer drying model.

작물 수분 스트레스 지수 산정을 위한 최적의 관측 간격과 시간에 대한 통계적 분석 (Statistical Analysis of Determining Optimal Monitoring Time Schedule for Crop Water Stress Index (CWSI))

  • 최용훈;김민영;오우현;조정건;윤석규;이상봉;김영진;전종길
    • 한국농공학회논문집
    • /
    • 제61권6호
    • /
    • pp.73-79
    • /
    • 2019
  • Continuous and tremendous data (canopy temperature and meteorological variables) are necessary to determine Crop Water Stress Index (CWSI). This study investigated the optimal monitoring time and interval of canopy temperature and meteorological variables (air temperature, relative humidity, solar radiation and wind speed) to determine CWSIs. The Nash-Sutcliffe model efficiency coefficient (NSE) was used to quantitatively describe the accuracy of sampling method depending upon various time intervals (t=5, 10, 15, 20, 30 and 60 minutes) and CWSIs per every minute were used as a reference. The NSE coefficient of wind speed was 0.516 at the sampling time of 60 minutes, while the ones of other meteorological variables and canopy temperature were greater than 0.8. The pattern of daily CWSIs increased from 8:00 am, reached the maximum value at 12:00 pm, then decreased after 2:00 pm. The statistical analysis showed that the data collection at 11:40 am produced the closest CWSI value to the daily average of CWSI, which indicates that just one time of measurement could be representative throughout the day. Overall, the findings of this study contributes to the economical and convenient method of quantifying CWSIs and irrigation management.

관개수준별 사과나무의 엽온 및 수분 스트레스 지수 변화 분석 (Response of Crop Water Stress Index (CWSI) and Canopy Temperature of Apple Tree to Irrigation Treatment Schemes)

  • 김민영;최용훈;조정건;윤석규;박정훈;김영진;전종길;이상봉
    • 한국농공학회논문집
    • /
    • 제61권5호
    • /
    • pp.23-31
    • /
    • 2019
  • Crop response to weather and internal water pressure changes is more sensitive to crop water stress than soil water content. Recently, its implementation to optimal irrigation scheduling has been receiving much attention. This study was conducted to determine and compare the theoretical crop water stress index (CWSI) using meterological data and canopy temperature collected from three different irrigation treatments, which were Tr-1 plot (rainfed), Tr-2 plot (50% of daily evapotranspiration (ET) irrigated) and Tr-3 plot (75% of daily evapotranspiration (ET) irrigated). The readings of canopy temperature and CWSI were significantly different among irrigation treatment schemes. The average canopy temperatures and CWSIs of Tr-1 and Tr-3 plots were $34.6^{\circ}C$ and $32.6^{\circ}C$, 0.79 and 0.64, respectively. Solar radiation had the biggest correlation with CWSI (R=0.68) which was followed by wind speed, relative humidity and air temperature. Overall, the findings of this study indicated that canopy temperatures and CWSIs could be further used for irrigation scheduling for crop growth.

Effect of seasonal changes on fertility parameters of Holstein dairy cows in subtropical climate of Taiwan

  • Liu, Wen-Bor;Peh, Huo-Cheng;Wang, Chien-Kai;Mangwe, Mancoba Christopher;Chen, Chih-Feng;Chiang, Hsin-I
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권6호
    • /
    • pp.820-826
    • /
    • 2018
  • Objective: The purpose of this retrospective study was to investigate the relationship between temperature-humidity index (THI), season, and conception rate (CR) of Holstein cows in central Taiwan. Methods: The mean performance and number of observations were statistically evaluated for various parameters, including age at first service, number of days open, gestation length, CR, and calving interval for different parities. Results: The results indicate that the mean age at first service was 493.2 days; the gestation length was similar across all cows of different parities, ranging from 275.1 to 280.7 days. The overall CR of all inseminations was significantly lower in multiparous cows ($47.26%{\pm}0.22%$) than in heifers ($57.14%{\pm}0.11%$) (p<0.05). At THI>72 and during the hot season (from June to November), CRs for multiparous cows were significantly reduced compared to that for heifers, while the ratio remained unchanged among heifers for all seasons. Conclusion: To achieve a high CR, lactating cows should be bred in winter and spring (from December to May) from the start of the seasonal breeding program, whereas the heifer should be allowed to breed in summer and fall under the subtropical climate in Taiwan.

Correlation Between the “seeing FWHM” of Satellite Optical Observations and Meteorological Data at the OWL-Net Station, Mongolia

  • Bae, Young-Ho;Jo, Jung Hyun;Yim, Hong-Suh;Park, Young-Sik;Park, Sun-Youp;Moon, Hong Kyu;Choi, Young-Jun;Jang, Hyun-Jung;Roh, Dong-Goo;Choi, Jin;Park, Maru;Cho, Sungki;Kim, Myung-Jin;Choi, Eun-Jung;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권2호
    • /
    • pp.137-146
    • /
    • 2016
  • The correlation between meteorological data collected at the optical wide-field patrol network (OWL-Net) Station No. 1 and the seeing of satellite optical observation data was analyzed. Meteorological data and satellite optical observation data from June 2014 to November 2015 were analyzed. The analyzed meteorological data were the outdoor air temperature, relative humidity, wind speed, and cloud index data, and the analyzed satellite optical observation data were the seeing full-width at half-maximum (FWHM) data. The annual meteorological pattern for Mongolia was analyzed by collecting meteorological data over four seasons, with data collection beginning after the installation and initial set-up of the OWL-Net Station No. 1 in Mongolia. A comparison of the meteorological data and the seeing of the satellite optical observation data showed that the seeing degrades as the wind strength increases and as the cloud cover decreases. This finding is explained by the bias effect, which is caused by the fact that the number of images taken on the less cloudy days was relatively small. The seeing FWHM showed no clear correlation with either temperature or relative humidity.