• Title/Summary/Keyword: temperature-dependent development

Search Result 308, Processing Time 0.022 seconds

A Study on the Application of the Solar Energy Seasonal Storage System Using Sea water Heat Source in the Buildings (해수냉열원을 이용한 태양열계간축열시스템의 건물냉방 적용에 관한 연구)

  • Kim, Myung-Rae;Yoon, Jae-Ock
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-61
    • /
    • 2009
  • Paradigm depending only on fossil fuel for building heat source is rapidly changing. Accelerating the change, as it has been known, is obligation for reducing green house gas coming from use of fossil fuel, i.e. reaction to United Nations Framework Convention on Climate Change. In addition, factors such as high oil price, unstable supply, weapon of petroleum and oil peak, by replacing fossil fuel, contributes to advance of environmental friendly renewable energy which can be continuously reusable. Therefore, current new energy policies, beyond enhancing effectiveness of heat using equipments, are to make best efforts for national competitiveness. Our country supports 11 areas for new renewable energy including sun light, solar heat and wind power. Among those areas, ocean thermal energy specifies tidal power generation using tide of sea, wave and temperature differences, wave power generation and thermal power generation. But heat use of heat source from sea water itself has been excluded as non-utilized energy. In the future, sea water heat source which has not been used so far will be required to be specified as new renewable energy. This research is to survey local heating system in Europe using sea water, central solar heating plants, seasonal thermal energy store and to analyze large scale central solar heating plants in German. Seasonal thermal energy store necessarily need to be equipped with large scale thermal energy store. Currently operating central solar heating system is a effective method which significantly enhances sharing rate of solar heat in a way that stores excessive heat generating in summer and then replenish insufficient heat for winter. Construction cost for this system is primarily dependent on large scale seasonal heat store and this high priced heat store merely plays its role once per year. Since our country is faced with 3 directional sea, active research and development for using sea water heat as cooling and heating heat source is required for seashore villages and building units. This research suggests how to utilize new energy in a way that stores cooling heat of sea water into seasonal thermal energy store when temperature of sea water is its lowest temperature in February based on West Sea and then uses it as cooling heat source when cooling is necessary. Since this method utilizes seasonal thermal energy store from existing central solar heating plant for heating and cooling purpose respectively twice per year maximizing energy efficiency by achieving 2 seasonal thermal energy store, active research and development is necessarily required for the future.

  • PDF

Growth of Copepod $Acartia$ $hongi$ Nauplii in Kyeonggi Bay, Korea

  • Youn, Seok-Hyun;Choi, Joong-Ki
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.379-387
    • /
    • 2011
  • Copepod nauplii plays an important role as a linker between the microbial food web and classical food chain in marine ecosystem and is an essential food source for early stage of many larval fishes. Study on the influencing factors on the growth of copepod naupliar stages has been rarely carried out in despite of these ecological significances. Many studies have shown that food availability and temperature are major factors to influence copepod growth. However, due to the complicated environment parameters in coastal ecosystem, the relationships between growth of copepods and influencing factors are still unclear under the natural condition. Growth rates of the copepod $Acartia$ $hongi$ nauplii were measured in Kyeonggi Bay from February to December 2001. $Acartia$ $hongi$ is numerically abundant and widespread predominant species in the coastal regions of the Yellow Sea and occurs continuously throughout the year, with a maximum peak in late spring. The naupliar growth rates of $Acartia$ $hongi$ by the artificial cohort method varied from 0.03 to 0.18 $day^{-1}$, with a mean of 0.09 $day^{-1}$. The overall naupliar growth rates showed a significantly positive relationship with the variation in water temperature. However, Previous study reported that the growth rates of adult $Acartia$ $hongi$ were primarily influenced by the variation in chlorophyll-$a$. Therefore, these differences demonstrated that the influencing factors of growth did not correspond with the developmental stages. The results of this study suggest that the dissimilarity of growth between nauplius and adult female resulted from the size-dependant difference in food availability and the growth of older developmental stages containing adults are more food-dependent than juveniles.

Study on Simulation and Calculation Method of Thermal Error Compensation System for a Ball Screw Feed Drive (볼 스크류 이송장치 열 에러 보상 시스템의 시뮬레이션 및 계산 방법에 관한 연구)

  • Xu, Zhe Zhu;Choi, Chang;Kim, Lae-Sung;Baek, Kwon-In;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.88-93
    • /
    • 2017
  • Due to the requirement of the development of the precision manufacturing industry, the accuracy of machine tools has become a key issue in this field. A critical factor that affects the accuracy of machine tools is the feed system, which is generally driven by a ball screw. Basically, to improve the performance of the feed drive system, which will be thermally extended lengthwise by continuous usage, a thermal error compensation system that is highly dependent on the feedback temperature or positioning data is employed in the machine tool system. Due to the overdependence on measuring technology, the cost of the compensation system and low productivity level are inevitable problems in the machine tool industry. This paper presents a novel feed drive thermal error compensation system method that could compensate for thermal error without positioning or temperature feedback. Regarding this thermal error compensation system, the heat generation of components, principal of compensation, thermal model, mathematic model, and calculation method are discussed. As a result, the test data confirm the correctness of the developed feed drive thermal error compensation system very well.

Initiation and Termination of Pupal Diapause in the Oriental Tobacco budworm (Heliothis assulta) (담배나방 (Heliothis assulta) 용휴면의 유기와 종료)

  • 부경생;신현철;한만위;이문홍
    • Korean journal of applied entomology
    • /
    • v.29 no.4
    • /
    • pp.277-285
    • /
    • 1990
  • Laboratory and field studies were conducted to investigate the initiation and termination factors for pupal diapause in the Oriental tabacco budworm, Heliothis assulta Guenee. Diapause induction was dependent of photoperiod and temperature experienced by 4th and 5th instar larve. One hundred percent of pupal diapause was obtained when larvae were grown at 10L/14D or shorter and $20^{\circ}C$. But at $25^{\circ}C$ the maximum rate of diapause was only about 85% at 8L/16D, the shortest photoperiod tested in this experiment. Adults, eggs or pupae did not respond to diapause-inducing environmental conditions. The critical photoperiod was 12-12.5 hr at $25^{\circ}C$and 14-14.5 hr at $20^{\circ}C$. In the field-collected sample 100% of diapuse rate was observed on Sept. 20 and thereafter in Suwon and middle part of Korea. Cold temperature treatment was not necessary in the termination of pupal diapause, but accelerated adult development.

  • PDF

Development of Salted Semi-dried Common Gray Mullet Mugil cephalus using Response Surface Methodology (Response Surface Methodology를 이용한 숭어(Mugil cephalus) 반염건품의 개발)

  • Park, Kwon Hyun;Heu, Min Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.6
    • /
    • pp.839-848
    • /
    • 2015
  • This study examined the optimal salting drying method and processing conditions (salt concentration, curing time, dry temperature, and drying time) for preparing salted semi-dried common gray mullet (SSD-CGM) Mugil cephalus based on the moisture content, salinity, and overall acceptance using response surface methodology (RSM). The moisture content, salinity, and overall acceptance of SSD-CGM prepared with different salting methods revealed that dry salting was the optimal salting method for preparing high-quality SSD-CGM. The optimal drying method for preparing high-quality SSD-CGM based on the drying velocity and sensory color was hot air-blast drying. The results of the RSM program indicated that the optimal independent variables ($X_1$, salt concentration; $X_2$, curing time; $X_3$, dry temperature; $X_4$, drying time) based on the dependent variables ($Y_1$, moisture content; $Y_2$, salinity; $Y_3$, overall acceptance) for high-quality SSD-CGM were 5.6% for $X_1$, 2.7 h for $X_2$, $47.0^{\circ}C$ for $X_3$, and 8.5 h for $X_4$ for uncoded values. The predicted values of $Y_1$, $Y_2$, and $Y_3$ for SSD-CGM prepared under optimal conditions were 54.4%, 4.2%, and 6.3, respectively, while the experimental values were $55.2{\pm}1.0%$, $4.1{\pm}0.3%$ and $6.7{\pm}0.8$. The actual and predicted values did not differ.

Sedimentary and Benthic Environment Characteristics in Macroalgal Habitats of the Intertidal Zone in Hampyeong Bay (함평만 조간대 해조류 분포지역의 퇴적 및 저서환경 특성)

  • Hwang, Dong-Woon;Koh, Byoung-Seol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.694-703
    • /
    • 2012
  • To understand the characteristics of sedimentary and benthic environments in habitats of naturally-occurring intertidal benthic macroalgae, various geochemical parameters of sediment (grain size, ignition loss [IL], chemical oxygen demand [COD], and acid volatile sulfur [AVS]) and pore water (temperature, salinity, pH, and nutrients) were measured in the southern intertidal zone of Hampyeong Bay at two month intervals from April to October 2009. Ecological characteristics including the distribution and biomass of benthic macroalgae were also investigated. Benthic macroalgae were distributed below 4 to 5 m depth from mean sea level near the lower portion of the intertidal zone where air exposure time is relatively short. The distribution area and biomass of benthic macroalgae gradually decreased during the study period. The surface sediments in the benthic algal region were mainly composed of finer sediments, such as slightly gravelly mud and mud. The temperature, salinity, pH, and nutrient concentrations (except dissolved inorganic nitrogen) in pore water did not differ in regions with and without benthic macroalgae, whereas the mean grain size and the concentrations of IL, COD, and AVS in sediments were much higher in regions harboring benthic macroalgae. The correlation between mean grain size and IL in sediments displayed two distinct gradients and the slope was much steeper in regions harboring benthic macroalgae, indicating that the content of organic matter in benthic algal region is not solely dependent on mean grain size. Our results indicate that the benthic macroalgae in the southern intertidal zone of Hampyeong Bay play an important role in the accumulation of organic matter in sediment.

Characteristics of Precipitation Hardened Extra Low Carbon Steels (석출강화형 극저탄소강의 특성에 대한 고찰)

  • Yoon, Jeong-Bong;Kim, Sung-il;Kim, In-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.609-616
    • /
    • 2008
  • Conventional bake-hardenable(BH) steels should be annealed at higher temperatures because of the addition of Ti or/and Nb which forms carbides and raises recrystallization start temperature. In this study, the development of new BH steels without Ti or Nb addition has been reviewed. The new BH steels have nearly same mechanical properties as the conventional BH steels even though it is annealed at lower temperature. The steels also show smaller deviation of the mechanical properties than that of the conventional BH steels because of the conarol of solute carbon content during steel making processes. The deviation of mechanical properties in conventional BH steels is directly dependent on the deviation of solute carbon which is greatly influenced by the amount of the carbide formers in conventional BH steels. Less alloy addition in the newly developed BH steels gives economical benefits. By taking the advantage of sulfur and/or nitrogen which scarenge in Interstitial-Free or conventional BH steels, fine manganese sulfides or nano size copper sulfides were designed to precipitate, and result in refined ferrite grains. Aluminum nitrides used as a precipitation hardening element in the developed steels were also and resull in fine and well dispersed. As a result, the developed steels with less production cost and reduced deviation of mechanical properties are under commercial production. Note that the developed BH steels are registered as a brand name of MAFE(R) and/or MAF-E(R).

Free vibration analysis of FG plates under thermal environment via a simple 4-unknown HSDT

  • Attia, Amina;Berrabah, Amina Tahar;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.899-910
    • /
    • 2021
  • A 4-unknown shear deformation theory is applied to investigate the vibration of functionally graded plates under thermal environment. The plate is fabricated from a functionally graded material mixed of ceramic and metal with continuously varying material properties through the plate thickness. Three types of thermal loadings, uniform, linear and nonlinear temperature rises along the plate thickness are taken into account. The present theory contains four unknown functions as against five or more in other higher order shear deformation theories. The through-the-thickness distributions of transverse shear stresses of the plate are considered to vary parabolically and vanish at upper and lower surfaces. The present model does not require any problem dependent shear correction factor. Analytical solutions for the free vibration analysis are derived based on Fourier series that satisfy the boundary conditions (Navier's method). Benchmark solutions are firstly considered to evaluate the accuracy of the proposed model. Comparisons with the solutions available in literature revealed the good capabilities of the present model for the simulations of vibration responses of FG plates. Some parametric studies are carried out for the frequency analysis by varying the volume fraction profile and the temperature distribution across the plate thickness.

Numerical Modeling of Shear Heating in 2D Elastoplastic Extensional Lithosphere using COMSOL Multiphysics® (콤솔 멀티피직스를 이용한 2차원 탄소성 인장 암석권 모형에서 발생하는 전단열에 관한 수치 모사 연구)

  • Jo, Taehwan;So, Byung-Dal
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • In the development of geodynamic structures such as subduction and rift zones, a weakening mechanism is essential for localized weak zone formation in the lithosphere. Shear heating, a weakening mechanism, generates short-wavelength temperature elevation in the lithosphere; the increased temperature can reduce lithospheric strength and promote its breakup. A two-dimensional elastoplastic extensional basin model was used to conduct benchmarking based on previous numerical simulation studies to quantitatively analyze shear heating. The amount of shear heating was investigated by controlling the yield strength, extensional velocity, and strain- and temperature-dependent weakening. In the absence of the weakening mechanism, the higher yield strength and extensional velocity led to more vigorous shear heating. The reference model with a 100-MPa yield strength and 2-cm/year extension showed a temperature increase of ~ 50 K when the bulk extension was 20 km (i.e., 0.025 strain). However, in the yield-strength weakening mechanism, depending on the plastic strain and temperature, more efficient weakening induced stronger shear heating, which indicates positive feedback between the weakening mechanism and the shear heating. The rate of shear heating rapidly increased at the initial stage of deformation, and the rate decreased by 80% as the lithosphere weakened. This suggests that shear heating with the weakening mechanism can significantly influence the strength of relatively undamaged lithosphere.

Optimization of Microwave Extraction Conditions for Antioxidant Phenolic Compounds from Ligustrum lucidum Aiton Using Response Surface Methodology (반응표면분석법을 이용한 여정자의 페놀계 항산화 성분에 대한 마이크로웨이브 추출조건 최적화)

  • Yun, Sat-Byul;Lee, Yuri;Lee, Nam Keun;Jeong, Eung-Jeong;Jeong, Yong-Seob
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.4
    • /
    • pp.570-576
    • /
    • 2014
  • Response surface methodology (RSM) was applied to optimize the microwave-assisted extraction (MAE) conditions for electron-donating ability, total phenol content, and total flavonoid content of Ligustrum lucidum Aiton. Ligustrum lucidum Aiton from different regions was tested, and Ligustrum lucidum Aiton from Haenam was chosen due to its higher total phenolic content, total flavonoid content, DPPH radical scavenging activity and ABTS radical scavenging activity compared to the other samples. Central composite design was used to optimize extraction of Ligustrum lucidum Aiton from Haenam as well as determine the effects of extraction temperature ($X_1$) and extraction time ($X_2$) on dependent variables ($Y_n$). Determination coefficients ($R^2$) of the regression equations for dependent variables ranged from 0.8858 to 0.9517. The optimum points were $131.68^{\circ}C$ for extraction temperature and 5.49 min for extraction time. Predicted values of the optimized conditions were acceptable when compared to experimental values.