• Title/Summary/Keyword: temperature-dependent development

Search Result 308, Processing Time 0.025 seconds

Statistical Analysis of the Meteorological Elements for Ozone and Development of the Simplified Model for Ozone Concentration (오존 농도에 영향을 미치는 주 기상요소의 도출 및 예측모형 수립)

  • 전의찬;우정헌
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.257-266
    • /
    • 1999
  • In order to analyze the effect of meteorological elements on ozone concentration, we carried out cross-correlation of the elements with ozone concentraton, and time series analysis on them. As a result, it revealed that temperature, wind speed and humidity are not independent variables with ozone concentrations, and also, solar radiation and mixing height are the major elements that affect them. We developed models for ozone with solar radiation and mixing height as dependent variables to verify the effect of major meteorological elements. The predicted ozone concentration has strong correlation coefficients, So, We could conclude that we can predict ozone concentreation only with solar raidation and mixing height as dependents.

  • PDF

Development of Combustor for Combustible Hazardous Gas (가연성 유해가스 처리를 위한 연소기 개발)

  • 전영남;채종성;김미환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.479-485
    • /
    • 1996
  • Volatile organic compounds are air pollutants exhausting from industrial process, evaporation of solvent, and so on. Most of VOCs are the combustible gas of low calorific value as it is diluted by air. The systems burning such a hazardous gas need to increase enthalpy in order to increase flame stability. In this study an incinerator with reciprocating flow in the honeycomb ceramic has been used for the experiment of VOCs control. By the reciprocating flow system, the enthalpy of combustion gas is effectively regenerated into the enthalpy increases of the combustible gas through the honeycomb ceramic, which provides a heat storage. The position of the reaction zone is strongly dependent on the parameters of mixture velocity and time frequency. Flame front is changed to the point where burning velocity is coincided with burning velocity in the honeycomb ceramic. In this system it is important that flame front should be located symmetrically at the center of honeycomb ceramic for the purpose of increasing the reaction rate at one point. Peak temperature becomes higher with decreasing time frequency, at which the flow direction is regularly reversed.

  • PDF

Phase Developments and Microstructure Changes of Calcium Phosphate Powders Synthesized by Recycling Eggshell (달걀껍질의 재 사용에 의해 제조 된 생체용 Calcium Phosphate 분말의 상변화 거동 및 미세구조 변화에 관한 연구)

  • Lee Sang-Jin;Kim Joo-Won
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.391-398
    • /
    • 2004
  • Calcium phosphate powders were successfully synthesized by using re-cycled eggshell and phosphoric acid. The crystallization behavior and powder morphologies of the synthesized powders were dependent on the starting condition of the eggshell, the mixing ratio and method of the eggshell and phosphoric acid, and calcination temperature. In general, $\beta$-tricalcium phosphate was stably synthesized at about $900^{\circ}C$ for 1h at each proper mixing ratio. And, the synthesized powders showed the similar microstructures to the morphology of original eggshell with uniform particle sizes. In this study, the calcium phosphate powders were synthesized with eggshell in various processing method. And their unique microstructures obtained from the eggshell were also. observed. The crystalline developments and microstructures of the synthesized powders were examined by X-ray diffractometer and scanning electron microscopy.

Mechanical Properties and Water Absorption of Rice Starch-Filled Linear Low Density Polyethylene

  • Wahab, Mohammad A.;Mottaleb, Mohammad A.
    • Macromolecular Research
    • /
    • v.9 no.6
    • /
    • pp.297-302
    • /
    • 2001
  • Rice starch was incorporated into linear low density polyethylene (LLDPE) using a Brabender Plastic-Corder internal mixer at a temperature of 140$\^{C}$ and 40 rpm. The starch loading was varied from 0 to 30% with 5 intervals. Studies on brabender torque development, mechanical properties and water absorption were investigated. The starch loading did not influence the brabender torque significantly. With respect to mechanical properties; the tensile strength and elongation at break decrease with increasing starch loading. The Young's modulus also increases with the starch filling. Mechanical properties were deteriorated as the starch absorbed moisture. The rate of water absorption was dependent on the starch filling in the composites. The scanning electron microscope (SEM) analysis was performed for the tensile fracture surfaces and it revealed the starch agglomeration and a poor dispersion of starch in the LLDPE matrix.

  • PDF

Prediction of Microstructural Evolution in Hot Forging of Steel by the Finite Element Method (유한요소법에 의한 열간성형공정에서 강의 미세조직변화 예측)

  • 장용순;고대철;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.129-138
    • /
    • 1998
  • The objective of this study is to demonstrate the ability of a computer simulation of microstructural evolution in hot forging of C-Mn steels. The development of microstructure is strongly dependent on process variables and metallurgical factors that affect time history of thermodynamical variables such as temperature, strain. and strain rate during deformation. Then finite element method is applied for the prediction of microstructural evolution, and it should be coupled with heat transfer analysis to consider the change of thermodynamical properties during forming process. In this study, Yada's recrystallization model and rigid-thermoviscoplastic finite element method are employed in order to analyze microstructural evolution during hot forging process. To show the validity and effectiveness of the proposed method, experiments are accomplished and the results of experiments are compared with those of simulations.

  • PDF

Development of the Hybrid Cold-Hot Stamping Process for the 1-Piece Aluminum Door Inner Part (1-Piece 알루미늄 도어 인너 냉간-열간 복합 성형공정 개발)

  • Nam, S.W.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.5
    • /
    • pp.242-246
    • /
    • 2021
  • Aluminum alloy sheet is being applied to automobiles continuously for the purpose of reducing car body weight. However, due to low formability, there's a limit to application of products with a deep forming depth such as door inner parts. Therefore, the difficult-to-form parts are mainly segmented formed then joined together, which is also disadvantageous as it increases the cost of manufacturing. This study proposes a hybrid cold-hot stamping method for the 1-piece door inner part to reduce cost. To design the stamping process, numerical simulation method is established by using the temperature-dependent mechanical properties of AA6016. The formability according to the hybrid cold-hot stamping method is evaluated using numerical analysis. The suitability of the proposed stamping method is then verified through the stamping tryout.

Variation Profiles of Temperature by Green Area of Apartments in Gangnam, Seoul (서울 강남지역 아파트단지의 녹지면적에 따른 온도변화 모형)

  • 홍석환;이경재
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • This study was carried out to investigate the effect of green area in apartment complexes to variation of temperature. The inside temperature of each site was estimated by analyzing Landsat ETM+ image data. The factors on variation of temperature were landcover type, building density, and Normalised Difference Vegetation Index(NDVI). The results of correlation between inside temperature of apartment complex and land cover type showed that the green area ratio had negative(-) correlation and impermeable pavement ratio had positive(+) correlation. Building-to-land ratio was not significant with inside temperature. A coefficient of correlation between the temperature value and the value of permeable pavement ratio added up green area ratio was higher than a coefficient of correlation between the temperature value and the value of permeable pavement ratio added up impermeable pavement ratio. Thus we may define that permeable pavement area decrease urban temperature with green area in apartment complex. Floor area ratio had no significant correlation with inside temperature. Inside temperature was decreased as the NDVI was increased. To establish the temperature distribution model in a development apartment complex, As the result of regression analysis between inside temperature as dependent variable and permeable pave ratio+green area ratio, green area ratio, building-to-land ratio and NDIT as independent variables, only permeable pavement ratio added up green area ratio of the independent variables was accepted fur regression equation in both two seasons and adjusted coefficient of determination was 41.4 on September, 2000 and 40.4 on June,2001.

An Experimental Study on the Development and Possible Solution of Thermal Runaway Model of Electronic Moxibustion with System Error (전자뜸의 시스템 오류에 의한 열폭주 모델 구현 및 해결 방법에 관한 실험적 연구)

  • Lee, Byung Wook;Oh, Yong Taek;Jang, Hansol;Choi, Seong-Kyeong;Jo, Hyo Rim;Sung, Won-Suk;Kim, Eun-Jung
    • Korean Journal of Acupuncture
    • /
    • v.38 no.4
    • /
    • pp.282-289
    • /
    • 2021
  • Objectives : The purpose of this study is to construct a model of the possible thermal runaway of electronic moxibustion and to implement an appropriate risk management method. Methods : To reproduce the system error situation of the electronic moxibustion circuit equipped with microcontroller unit, temperature sensor and heater, a code was set to disable the signal input to temperature sensor and maintain "high" heating signal to heater. The temperature change of electronic moxibustion was compared between 3 types of heater module; module 1 consisting of a combination of heater+0 ohm+0 ohm resistance, module 2 consisting of a combination of heater+Polymeric Positive Temperature Coefficient (PPTC)+0 ohm resistance, and module 3 consisting of a combination of heater+PPTC+10 ohm resistance. The temperature change was measured using a polydimethylsiloxane (PDMS) silicone phantom. After maintaining surface temperature of the phantom at 31~32℃ for 20 seconds, electronic moxibustion was applied. After operating electronic moxibustion, the temperature change was measured for 660 seconds on the surface and 900 seconds at 2 mm depth. Results : Regardless of the module type, the time-dependent change in temperature showed a rapid rise followed by a gentle curve, and a sharp drop in temperature after reaching the maximum temperature about 10 minutes after the switching the moxibustion on. Temperature measured at the depth of 2 mm below the surface increased slower and to a lesser extent. Module 1 reached highest peak temperature with largest change of temperature at both depths followed by module 2, and 3. Conclusions : Through the combination of PPTC+resistance with the heater of electronic moxibustion, it is possible to limit the rise in temperature even with the software error. Thus, this setting can be used as an independent safety measure for the electronic moxibustion control unit.

Temperature-driven Models of Lipaphis erysimi (Hemiptera: Aphididae) Based on its Development and Fecundity on Cabbage in the Laboratory in Jeju, Korea (양배추에서 무테두리진딧물의 온도의존 발육 및 산자 단위모형)

  • Oh, Sung Oh;Kwon, Soon Hwa;Kim, Tae Ok;Park, Jeong Hoon;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • This study was conducted to develop temperature-driven models for a population model of turnip aphid, Lipaphis erysimi: nymphal development rate models and apterious adult's oviposition (larviparous) model. Nymphal development and the longevity and fecundity of adults were examined on cabbage at six constant temperatures (10, 15, 20, 25, 30, $35{\pm}1^{\circ}C$, 16L:8D). L. erysimi nymphs did not survive at $10^{\circ}C$. Development time of nymphs increased with increasing temperature up to $30^{\circ}C$ and thereafter slightly decreased, ranging from 18.5 d at $15^{\circ}C$ to 5.9 d at $30^{\circ}C$. The lower threshold temperature and thermal constant were estimated as $7.9^{\circ}C$ and 126.3 degree days, respectively. The nonlinear model of Lactin 2 fitted well for the relationship between the development rate and temperature of small (1+2 instar), large (3+4 instar) and total nymph (all instars). The Weibull function provided a good fit for the distribution of development times of each stage. Temperature affected the longevity and fecundity of L. erysimi. Adult longevity decreased as the temperature increased and ranged from 24.4 d at $20^{\circ}C$ to 16.4 d at $30.0^{\circ}C$ with abnormal longevity 18.2 d at $15^{\circ}C$, which was used to estimate adult aging rate model for the calculation of adult physiological age. L. erysimi showed a maximum fecundity of 91.6 eggs per female at $20^{\circ}C$. In this study, we provided three temperature-dependent components for an oviposition model of L. erysimi: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate.

Study on the Processing Variables of BSCCO-2212 Superconductor made by Melt Casting Process (용융주조법으로 제조한 BSCCO-2212 초전도체의 공정변수 연구)

  • Kim, Kyu-Tne;Jang, Seok-Hern;Lim, Jun-Hyung;Joo, Jinho;Kim, Chan-Joong;Bong, Gye-Won;Kim, Rye-Lim;Hyun, Ok-Bae
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.437-442
    • /
    • 2005
  • We fabricated BSCCO-2212 (2212) bulk superconductor by melt casting process, and evaluated the dependence of the critical properties on the temperature and cooling .ate of mold and the pouring methods of melt. It was observed that the critical current (Ic) of 2212 was significantly dependent on the pre-heating temperature of the mold. At the pre-heating temperature of $500^{\circ}C$ followed by air cooling condition, Ic of 48 A at 77 K was obtained which was higher than others processed at different temperatures. In addition, the Ic improved to 132 A when tilt casting method was applied. The improved Ic is probably due to the fact that the tilt casting reduced a turbulent flow of the melt during casting causing less porosity and more homogeneous microsructure. Critical temperature was measured to be 87-89 K after the first heat treatment and it improved to 90-91 K when subsequently heat treated at $650^{\circ}C$ in a nitrogen atmosphere. This improvement was considered to be due to an optimization of the oxygen content in the range of 8.16-8.2.