• Title/Summary/Keyword: temperature segregation

Search Result 200, Processing Time 0.025 seconds

Changes in Microstructure and Mechanical Properties due to Heat Treatment of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca Alloy Sheet Manufactured via Normal Casting and Twin Roll Casting Process (일반주조 및 쌍롤주조 공정으로 제조된 Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca 합금 판재의 열처리에 따른 미세조직 및 기계적 특성 변화)

  • Dong Hwan Eom;No Jin Park
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.359-366
    • /
    • 2023
  • Changes in microstructure and mechanical properties of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca (AZMX1100) alloy sheet manufactured by normal casting and twin roll casting process, were studied according to process and heat treatment. Non-uniform microstructure was observed in the initial sheet produced through both processes, and in particular, tilted dendrites and shifted central segregation were observed in the twin roll casting sheet. It was homogenized through hot rolling and heat treatment, and heat treated at 350℃ and 400℃ to compare the effect of heat treatment temperature. Both sheets were homogenized by the hot rolling process, and the grain size increased as the heat treatment temperature and time increased. It was confirmed that the grain size, deviation, and distribution of the second phase were finer and more homogenized in the TRC sheet. Accordingly, mechanical properties such as hardness, formability, and tensile strength also showed better values. However, unlike other previously reported AZMX alloy systems, it showed low formability (Erichsen value), which was judged by the influence of Al2Ca present in the microstructure.

Optimization of Analytical Conditions for the Quantification of Explosive Compounds in Soil using HPLC (HPLC에 의한 토양내 화약물질 정량분석조건 최적화)

  • Cho, Jung-Hyun;Bae, Bum-Han;Kim, Kye-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.51-60
    • /
    • 2009
  • A series of experiments was performed to develop an optimized analytical procedure for the analysis of explosives in soil by HPLC with soil samples collected at two live-fire military shooting ranges. The minimum amount of soil to be collected, Wmin, for the analysis of explosive compounds was 125g, based on the segregation and homogeneity constants that account for soil heterogeneity and non-homogeneous distribution of target explosive compounds. The optimization of extraction and HPLC analytical conditions were also studied based on analytes CV values. The most effective soil/ extractant ratio was estimated to be 10g-pretreated soil/20 mL acetonitrile as extractant. The optimized HPLC elution conditions for the separation of US EPA designated 14 explosive compounds, were column temperature 30${\circ}C$, eluents ratio of isopropanol: acetonitrile: water = 18 : 12: 70, and flow rate of 0.8 mUmin at 230 nm. However, UV wavelength 254 nm was better for the analysis of NB, 2,4-DNT, 2NT, 4NT, and 3NT.

On the Genesis of Okbang Tungsten Deposits (옥방(玉房) 중석광상(重石鑛床)의 성인(成因)에 관(關)한 연구(硏究) -특(特)히 남부광체(南部鑛體)에 대(對)하여-)

  • Youn, Jeung Su
    • Economic and Environmental Geology
    • /
    • v.12 no.4
    • /
    • pp.181-195
    • /
    • 1979
  • The Nambu orebodies of the Okbang tungsten mine are hosted in the Precambrian amphibolite and Weonnam formation. These orebodies can be classified into two types; The scheelite-bearing ore vein occurring in the amphibolite (the Nambu 1, 2 adits) and tungsten-bearing quartz vein along the contact between the amphibolite and the Weonnam formation (the Young-ho, -1, -2, -3 levels). The scheelite-bearing ore vein in the amphilbolite is discontinuous, narrow, and highly irregular in geometry, occurring only within the amphibolite with which of the vein is graduational. Based on these feature of the mode of occurrence, the origin of this ore type might be attributed to a potential segregation of tungsten ore fluid in situ from hornblenditic basic magma of the host rock. Tungsten-bearing quartz vein, however, is considered to have deposited along the N30-60E trending fractures as a later hypothermal vein after the hornblendite was emplaced. The principal ore mineral is scheelite with minor amount of wolframite, and the gangue minerals are quartz, and small amounts of fluorite, pyrrhotite, chalcopyrite and calcite. Fluid inclusion study of minerals from the Nambu orebody reveals that the fluids in fluorite of the scheelite-bearning ore vein attained a temperature range of $208{\sim}256^{\circ}C$ and those in quartz from the tungsten-bearing quartz vein a temperature range of $220{\sim}357^{\circ}C$. The real formation temperatures can be somewhat higher than filling temperatures, if pressure correction is made. Chemical analysis of 8 amphibolitc samples on major and some trace elements indicate that the amphibolite is igneous origin. On a Niggli diagram (al-alk)versus c, the analytical values are plotted on an igneous field, and on a Niggli diagram mg versus c they follow a karroo igneous trend line. According to the Ba, Cr, and Ni versus Niggli mg plots suggested by Leake (1964), Okbang amphibolite fall outside a pelitic field and compare favorably with his plots form ortho-amphibolites. Analitical values of $MoO_3$ of 8 samples of scheelite minerals from the Nambu orebody indicate that the tungsten-bearing quartz vein (type n) of Nambu orebody shows a range from 1. 69% to 4.38% which is higher than 0.94%~3.25% $MoO_3$ for the scheelite-bearing ore vein (type I). This fact indicates that the type II was deposited in a lower $fO_2/higher$ $fO_2$ environment and under lower temperature than the type I. Analysis of major components $WO_3$, MnO, and FeO of 6 samples of wolframite from the type II veins revealed that they contain 73.35~76.2% $WO_3$, 7.94~11.63% MnO, and 10.53~14.82% FeO. MnO/FeO ratios of wolframite shows the range of 0.85~1.17 which suggests a slightly higher temperature type of deposits than other major tungsten deposits in the country.

  • PDF

Material Characteristics and Clay Source Interpretation of the Ancient Ceramic Artifacts from the Wonsinheungdong Site in Daejeon, Korea (대전 원신흥동 유적 출토 고대 세라믹 유물의 재료학적 특성과 원료의 산지해석)

  • Kim, Ran-Hee;Jung, Hae-Sun;Jung, Sang-Hoon;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.27 no.2
    • /
    • pp.163-179
    • /
    • 2011
  • This study was to identify the material characteristics and provenance of the crucibles, potteries and roof tiles from the Wonsinheungdong site in Daejeon, Korea. Similar mineral composition of each samples showed by microscopic observation and X-ray diffraction analysis. However, wall thickness and mineral characterization of each ceramic artifacts are quite different. The pottery is characterized by thin wall with 0.5 to 0.7 cm and fine grained clay matrix. While the crucible and roof tile has thick wall with 1.3 to 2.5 cm, poorly sorted texture of many quarz, orthoclase and plagioclase whithin ceramic fabric. And large elonagated voids formed by hydrocarbone of straw during the firing and loose matrix obseved in crucible. All ceramic samples and ground soil of the site show similar mineralogical characteristics geochemical behavior and clay-mineralization degree. This indicates making that the soil is probable to be a raw material of all ceramic from the Wonsinheungdong site. Also, firing temperature of most ceramic artifacts are estimated as 850 of all ceramic from the Wonsinheungdong site. Also, firing temperature of most ceramic artifacts are estimated as 850 to $950^{\circ}C$ but hardest pottery fired high temperature between 1,050 to $1,150^{\circ}C$. The vitreous molten materials interpreted in slag included segregation of copper and tin. But it can not exclude the possibility that the glass molten material because observed reddish and greenish vitreous fine structure under microscopic.

Effect of Annealing Temperature on the Luminescence Properties of Digital-Alloy InGaAlAs Multiple Quantum Wells (디지털 합금 InGaAlAs 다중 양자 우물의 열처리 온도에 따른 발광 특성)

  • Cho, Il Wook;Byun, Hye Ryoung;Ryu, Mee-Yi;Song, Jin Dong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.321-326
    • /
    • 2013
  • The effect of rapid thermal annealing (RTA) on the optical properties of digital-alloy InGaAlAs multiple quantum well (MQW) structures have been investigated by using photoluminescence (PL) and time-resolved PL measurements as a function of RTA temperature. The MQW samples were annealed from $700^{\circ}C$ to $850^{\circ}C$ for 30 s in a nitrogen atmosphere. The MQW sample annealed at $750^{\circ}C$ exhibited the strongest PL intensity and the narrowest FWHM (Full width at half maximum), indicating the reduced nonradiative recombination centers and the improved interfaces between the wells and barriers. The MQW samples annealed at $800^{\circ}C$ and $850^{\circ}C$ showed the decreased PL intensities and blueshifted PL peaks compared to $750^{\circ}C$-annealed sample. The blueshift of PL peak with increasing RTA temperatures are ascribed to the increase of aluminum due to intermixing of gallium (Ga) and aluminum (Al) in the interfaces of InGaAs/InAlAs short-period superlattices. The decrease of PL intensity after annealing at $800^{\circ}C$ and $850^{\circ}C$ are attributed to the interface roughening and lateral composition modulation caused by the interdiffusion of Ga and Al and indium segregation, respectively. With increasing RTA temperature the PL decay becomes slower, indicating the decrease of nonradiative defect centers. The optical properties of digital-alloy InGaAlAs MQW structures can be improved significantly with optimum RTA conditions.

The Frost Heaving Characteristics of Subgrade Soils Using Laboratory Freezing System (실내동결시스템을 이용한 노상토의 동상 특성)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing system test simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the road structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this Paper, the evaluation of frost susceptibility was conducted by means of the mechanical property test and laboratory freezing system apparatus. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade soils of highway construction site, were measured to determine the frost susceptibility.

Large-Area Synthesis of High-Quality Graphene Films with Controllable Thickness by Rapid Thermal Annealing

  • Chu, Jae Hwan;Kwak, Jinsung;Kwon, Tae-Yang;Park, Soon-Dong;Go, Heungseok;Kim, Sung Youb;Park, Kibog;Kang, Seoktae;Kwon, Soon-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.130.2-130.2
    • /
    • 2013
  • Today, chemical vapor deposition (CVD) of hydrocarbon gases has been demonstrated as an attractive method to synthesize large-area graphene layers. However, special care should be taken to precisely control the resulting graphene layers in CVD due to its sensitivity to various process parameters. Therefore, a facile synthesis to grow graphene layers with high controllability will have great advantages for scalable practical applications. In order to simplify and create efficiency in graphene synthesis, the graphene growth by thermal annealing process has been discussed by several groups. However, the study on growth mechanism and the detailed structural and optoelectronic properties in the resulting graphene films have not been reported yet, which will be of particular interest to explore for the practical application of graphene. In this study, we report the growth of few-layer, large-area graphene films using rapid thermal annealing (RTA) without the use of intentional carbon-containing precursor. The instability of nickel films in air facilitates the spontaneous formation of ultrathin (<2~3 nm) carbon- and oxygen-containing compounds on a nickel surface and high-temperature annealing of the nickel samples results in the formation of few-layer graphene films with high crystallinity. From annealing temperature and ambient studies during RTA, it was found that the evaporation of oxygen atoms from the surface is the dominant factor affecting the formation of graphene films. The thickness of the graphene layers is strongly dependent on the RTA temperature and time and the resulting films have a limited thickness less than 2 nm even for an extended RTA time. The transferred films have a low sheet resistance of ~380 ${\Omega}/sq$, with ~93% optical transparency. This simple and potentially inexpensive method of synthesizing novel 2-dimensional carbon films offers a wide choice of graphene films for various potential applications.

  • PDF

Study on the Storage Stability of Horse Fat in Jeju (제주산 말지방(Horse Fat)의 저장 안정성 향상에 관한 연구)

  • Kim, Mi Seon;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • Horse fat is known to be an effective ingredient in Asia, and the horse fat itself, which is mixed with other ingredients at the additive level, is often sold as a finished product. In this case, physical properties of the horse fat raw material are important. Many horse fats produced in Korea (Jeju) have low temperature stability, so if not stored at low temperatures, segregation may occur. In the case of Japanese horse fat, it is partially hydrogenated or is used the solid phase as the horse fat by separating the liquid phase and the solid phase that is harder and more stable than the horse fat of Jeju. In this study, the physical properties were tested to improve the temperature stability even without the partial hydrogenation process of Jeju horse fat. Various oil gelling agents were used in the study. Results confirmed that the physical properties of the hydroxystearic acid added Jeju horse fat were improved. In addition, stability evaluations at temperatures of 25 ℃, 40 ℃, 45 ℃ and flow behavior evaluations at temperatures of 25 ℃, 30 ℃, 40 ℃ were performed for Jeju horse fat with hydroxystearic acid, 100% Jeju horse fat, and 100% Japanese horse fat. Results showed that the Jeju horse fat improved in flow behavior by adding hydroxystearic acid similar to that of Japanese horse fat. In addition, when the crystal state was observed under a microscope, the thermal stability was improved by decreasing the size of the needle-type crystals with the addition of hydroxystearic acid. Jeju horse fat containing hydroxystearic acid was found to have no physical problems even when stored at room temperature for a long time.

Defects analysis of RE : YAG (RE = Nd3+, Er3+) single crystal synthesized by Czochralski method (Czochralski법으로 성장된 RE : YAG(RE = Nd3+, Er3+) 단결정의 결함분석)

  • Park, Cheong Ho;Joo, Young Jun;Kim, Hye Young;Shim, Jang Bo;Kim, Cheol Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • RE : YAG ($RE=Nd^{3+}$, $Er^{3+}$) single crystals are laser diodes and generally grown by Czochralski method with controlling the various growth parameter. Since the defects occurred by temperature gradient or the rotation speed of solid-liquid growth interface act as the decline of crystal optical property during the growth procedure, crystalline quality improvement via defects analysis is necessary. The etch pit density (EPD) analysis was used to confirm the surface defect of grown RE : YAG single crystal and to select the area of transmission electron microscopy (TEM) analysis. Defects in the specimen produced by tripod polishing method such as buckling, rod shaped, bend contours by internal stress, segregation and others were observed by using 200 kV TEM and 300 kV FE-TEM.

Distributional Uniqueness of Deciduous Oaks(Quercus L.) in the Korean Peninsula (한반도 하록 참나무류의 분포 특이성)

  • Kim, Yun-Ha;Kim, Jong-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.2
    • /
    • pp.37-59
    • /
    • 2017
  • The Korean peninsula belongs to the temperate forest biome dominated by many deciduous oaks. We quantitatively and qualitatively studied vertical and horizontal distributions and habitat characteristics on the major oak species such as Quercus mongolica, Q. serrata, Q. variabilis, Q. dentata, Q. aliena and Q. acutissima. A total of 5,278 samples were analyzed with a species coverage and 6 principal environmental variables extracted from public database of nationwide natural environment survey. Correlation analysis was accomplished by the CANOCO using Canonical Correspondence Analysis and the Pearson correlation coefficient using PASW Statistics. The hierarchical distribution tendency of six oaks was finalized using the Goodman-Kruskal lambda coefficient of non-metric multidimensional scaling by SYN-TAX 2000. The utmost factor on the distributional segregation of oak species was the elevation, i.e. temperature. Q. serrata and Q. mongolica show clearly a diametrical distribution patterns with zonal distribution. Q. variabilis was determined as a thermophilic and xerophilous species that is a component of not only natural pseudo-climax forest but also secondary forest. The highest frequency of the dominant forest was found Q. mongolica. Whereas, Q. serrata showed the highest frequency of individual tree but the relatively lower frequency of dominant forest, which is resulted from the original habitat loss. By the benefit of the traditional Soopjeong-E, Q. acutissima dominant forests were remained rather largely. Individuals of Q. dentata occurred horizontally nationwide, but its dominant forest was the poorest. Dominant forest of Q. aliena, which is a natural vegetation, was the most rare due to a limited potential habitat.