• Title/Summary/Keyword: temperature rising test

Search Result 103, Processing Time 0.03 seconds

Aging Test of 20kVA Amorphous Core Transformer by Loading Back Method (부하반환법에 의한 20KVA 비정질 변압기의 경년열화 연구)

  • 민복기;송재성;정영호;임정재
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.278-285
    • /
    • 1994
  • Aging test was done by loading back method for 20kVA amorphous core transformers manufactured by Hyosung Industries Co. and korea Electric Power Corporation. Iron losses, copper losses and insulation oil temperatures of the transfromers was measured for all the testing period. Expected life of amorphous core transformers on the basis of the degradation of the insulators was 46 years at 100% load, and 2.4 years at 130% load. Average temperature rising of transformer oil of amorphous core transformers was higher than that of silicon steel core transformers. Hence lowering the oil temperature by optimized design is needed for improving the expected life of the amorphous transformers.

  • PDF

Execution of High Fluidity Concrete by Flowing Method (유동화 공법을 적용하여 제조한 고유동 콘크리트의 시공)

  • 한민철;손성운;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.28-33
    • /
    • 2001
  • This paper presents the results of mock up test on the manufacturing of high fluidity concrete by applying flowing methods with segregation reducing type superplasticizer(SRS). Three kinds of mock up structure are made such as. conventional concrete(A), high fluidity concrete(B) and high fluidity concrete incorporating 20% of fly ash(C). Physical and mechanical properties, temperature history of structure and nondestructive test are performed. Segregation reducing type superplasticizer is put into base concrete at field, and base concrete is also flowed at field. C mock up structure which requires 0.85% of SRS to flow base concrete shows most desirable performance at fresh state. The highest rising temperature shows the lowest at C structure among the tested structures. Strength variations before and after flowing also show the lowest values at C structures.

  • PDF

The Field Test of bankfiltration(including alluvial and riverbed deposits) Source Heat Pump Cooling & Heating System (강변여과수(충적층 및 하상)를 이용한 열펌프 냉난방시스템의 실증연구)

  • Hwang, Ki-Sup;Jung, Woo-Sung;Ahn, Young-Sub
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1186-1190
    • /
    • 2006
  • Rising in important of alternative energy due to the recenfly high oil price and environment problem. Application of alternative energy has become higher than before. In this study, facility test of Geothermal energy to bankfiltration was examined appliying changwon pumping well. Initial installation cost was efficiently saved by connecting a heat pump system to pumping well in changwon bankfiltration site. A falling-off in efficiency of heat pump was free due to the bankfiltration that is rare for the temperature fluctuation. Therefore, Heat soure as bankfiltration system solve the existing facilities problems of geothermal heat pump system.

  • PDF

Bond behavior between circular steel tube and high-strength concrete after elevated temperatures

  • Ji, Zhou;Zongping, Chen;Maogen, Ban;Yunsheng, Pang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.575-590
    • /
    • 2022
  • In this paper, bond-slip behavior of high strength concrete filled circular steel tube (HSCFCST) after elevated temperatures treatment was studied. 17 specimens were designed for push-out test. The influence was discussed as following parameters: (a) concrete strength, (b) constant temperature, and (c) bond length. The results showed that (1) after elevated temperatures treatment, the bond strength of the HSCFCST specimens increased first and then decreased with temperature rising; (2) the bond strength increased with the increase of concrete strength at room temperature, while the influence subsided after elevated temperatures treatment; (3) the strain of the circular steel tube was distributed exponentially along its length, the stress changed from exponential distribution to uniform distribution with the increase of load; (4) the bond damage process was postponed with the increase of constant temperature; and (5) the energy consumption capacity of the bonding interface increased with the rise of concrete strength and constant temperature. Moreover, computational formulas of ultimate and residual bond strength were obtained by regression, and the bond-slip constitutive models of HSCFCSTs after elevated temperatures was established.

Fundamental Properties and Adiabatic Temperature Rise of Concrete with the Combination of Mineral and Chemical Admixture (혼화재료의 조합사용에 따른 콘크리트의 기초물성 및 단열온도상승 특성)

  • Jeon Chung Keun;Kim Jong;Shin Dong-An;Yoon Gi-Won;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.345-348
    • /
    • 2005
  • This paper presents the result of adiabetic temperature rise and fundamental properties of concrete combining admixtures. According to results, difference of setting time with I5.5hours is observed between S-P and R-F30 mixture. Based on the adiabetic temperature rise test, 8$^{circ}C$of heat producted occurs between E-P and R-F30 mixture. is applied to estimate the temperature rising under adiabetic curing condition, which exhibits closer consistency with tested value. The function mentioned above can account for the effect of dormant period in hydration process at early stage on hydration heat production. It reveals that the consideration of placing layer based on the mixture adjustment(E-P mixture at top layer and R-F30 mixture at bottom layer) in mass concreting will contribute to reduce hydration heat as well as alleviate tensile stress discrepancy between placing layer.

  • PDF

Hydration Heat Analysis of Mass Concrete Replacement of Low Heat Binder and CGS with Fine Aggregate (저발열 결합재 및 CGS를 잔골재로 치환한 매스콘크리트의 수화열 해석)

  • Han, Jun-Hui;Lim, Gun-Su;Chi, Il-Kyeung;Yoon, Chee-Whan;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.235-236
    • /
    • 2021
  • This study evaluated temperature distribution through adiabatic temperature rising test and hydration heat Analysis as a performance verification to utilize CGS as a hydration heat reduction material for mass concrete when replacing it with fine aggregate. According to the analysis, the temperature difference between the center and the surface was the highest at about 30℃, followed by the CGS 50% at 26℃ and the low heat combiner FA 30% at 23℃.

  • PDF

Thermal Crack Control of LNG Tank Roof (LNG 탱크 Roof의 온도균열 제어)

  • 김태홍;하재담;유재상;이종열;권영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.421-424
    • /
    • 2002
  • Concrete roof in In-Chon LNG tank #15~18 is a very important structure. Precise control of quality is needed. This roof has 0.6~1.5m thickness, 36.23m radius, and, 12.7m height. So in this structure thermal crack caused by hydration heat should be controled. In this project belite cement plus LSP concrete is used. As a result of ambient temperature rising test and thermal analysis using FEM, this belite cement plus LSP concrete is expected to control the thermal crack well.

  • PDF

An Experimental Study on the Cylinder Wall Temperature Characteristics for Load Variations in a Gasoline Engine (가솔린엔진의 부하(負荷)에 따른 실린더 벽면 온도특성(溫度特性)에 관(關)한 연구(硏究))

  • Kwon, K.R.;Ko, J.K.;Hong, S.C.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 1999
  • The purpose of this study is to prevent the stick, scuffing, scratch between piston and cylinder, is to contribute the piston design such as piston profile, clearance by calculating reaction force by over-lap of piston skirt, as measuring the temperature distributions of cylinder wall. The experiment has been peformed to obtain data during actual engine operation. Temperature gradient in peripheral and axial distributions of cylinder wall according to torque and speed of engine were measured by use of an 800cc class gasoline engine. The results obtained are summarized as follows ; 1) The temperature of cylinder wall at TDC was about $50{\sim}75^{\circ}C$ higher than temperature of cooling water. 2) The rear side temperature of top dead center was $141^{\circ}C$(1/4 load) in axial distribution, whereas the rear side of midway position temperature was $98^{\circ}C$. 3) The temperature of cylinder wall increased in according to rising temperature of cooling water. 4) The thrust side temperature of cylinder wall was about $15^{\circ}C$ in all load test. 5) The rear side temperature of top dead center was $159^{\circ}C$ (1/2 load) in peripheral distribution, it was about $39^{\circ}C$ higher than thrust side temperature.

  • PDF

A Study on the Evaporative Emission Characteristics of Korean Gasoline Vehicles (국내 휘발유 자동차의 증발가스 배출 특성에 관한 연구)

  • Park, Jun-Hong;Park, Young-Pyo;Lim, Yun-Sung;Lee, Jong-Tae;Kim, Jung-Su;Choi, Kwang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.121-129
    • /
    • 2011
  • Hydrocarbons which are the main sources of VOCs from motor vehicles are emitted not only from the engine exhaust gas but also from evaporation of the fuel in storage and supplying systems. Evaporative emissions from gasoline fuel systems could be classified by diurnal, hotsoak and running loss. Diurnal loss test procedures are different as countries. Korea introduced new evaporative regulation in 2009 with 24hour VT-shed test procedure and relaxed emission standards. The estimations on different test procedures in this study show that the new Korean regulation get a little more severe than before and the 2 day diurnal loss test of U.S. is the most severe. So the test procedures as well as the stronger standards should be considered in the next evaporative emission regulation to reduce VOCs from motor vehicles. The important parameters to affect evaporative emissions are air and fuel temperature and fuel vapor pressure. Diurnal loss increases exponentially as rising air temperature and vapor pressure. The effects of vapor pressure on running loss are different as the capacities of canisters. Tests with simulating real temperature and driving conditions show that hydrocarbons in evaporative emissions could be more than those in exhaust gas in summer season because of the higher air temperature.

The Test for Tool Life of Portable-Bevelers with the Various Cooling System (휴대용 면취기의 냉각 방법에 따른 공구수명 평가)

  • Min, Byung-Hoon;Choi, Won-Yong;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.23-27
    • /
    • 2008
  • This study is to evaluate the tool life of portable beveler which have various cooling system. It was compared with 3 different bevelers which has each other cooling system. Beveler A has no cooling system, beveler B has the cooling system for only inside of body, and beveler C has the cooling system for both the cutter and inside of body. The temperature of beveler A cutter surface had been continuously increasing as processing, but the rising tendency of temperature of beveler B cutter surface has slightly changed. In case of beveler C, the temperature is maintained. The tool life of beveler C is about 105m which is around 400% of beveler A(25m), and around 130% of beveler B(80m).