• Title/Summary/Keyword: temperature monitor

Search Result 678, Processing Time 0.03 seconds

High Temperature Sensitivity Characteristics of the Voltage Type High Temperature Piezoelectric Accelerometer (고온용 전압형 가속도센서의 온도특성)

  • Kim, Y.D.;Kim, K.I.;Jung, W.C.;Koh, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1285-1287
    • /
    • 1998
  • Vibration measurements to monitor the condition of machinery and machine elements offers several advantages over traditional methods of nondestructive evaluation. RIST(Research Institute of Industrial Science & Technology) has established a calibration system for accelerometers that measures within a frequency range from 2Hz to 6,300Hz and a temperature range from $-40^{\circ}C$ to $180^{\circ}C$. The calibration procedures are based on the principle of the comparison method. To monitor vibration signals of machinery and machine elements, annular shear type piezoelectric accelerometers employing solid state microelectronics were fabricated. The voltage sensitivity and resonant frequency of fabricated accelerometers was 83mV/g, 23kHz, respectively. This paper discusses the method of fabrication of annular shear type piezoelectric accelerometers and the results of field tests in POSCO(Pohang Iron & Steel Co. LTD.).

  • PDF

Development of a Patient Monitoring System Overall Architecture and Specifications (환자모니터링시스템의 개발 : 전체구조 및 기본사양)

  • 우응제;박승훈
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • We have developed a patient monitoring system including module-based bedside monitors, interbed network, central stations, clinical workstations, and DB servers. A bedside monitor with a color LCD can accommodate up to 3 module cases and 21 different modules. Six different physiological parameters of ECG, respiration, invasive blood pressure, noninvasive blood pressure, body temperature, and arterial pulse oximetry with plethysmoyaph are provided as parameter modules. In a single bedside monitor, modules and a module controller communicate with IMbps data rate through an intrabed network based on RS-485 and HDU protocol. At the same time, it communicates with other bedside monitors and central stations through interbed network based on 1 OMbps Ethernet and TCP/IP protocol. Central stations using 20" color CRT monitors can be connected with many bedside monitors and they display 18 channels of waveforms simultaneously. Clinical workstations are used mainly for the review of patient datE In order to accommodate more advanced data management capabilities such as 24-hour full disclosure, we have developed a relational database server dedicated to the patient monitoring system. Software for bedside monitor, central station, and clinical workstation fully utilizes graphical user interface techniques and all functions are controlled by a rotate/push button on the bedside monitor arid a mouse on the central station and clinical workstation. The entire system satisfies the requirements of AAMI and ANSI standards in terms of electrical safety and performances.nces.

  • PDF

A Study of Head Up Display System for Next Generation Vehicle (차세대 자동차 통합스마트 모니터 시스템에 관한 연구)

  • Yun, Sung-Ha;Son, Hui-Bae;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.439-444
    • /
    • 2011
  • In this paper, we implemented the intelligent smart monitor system for next generation which is most commonly viewed information in a vehicle from the instrument cluster, where speed, tachometer, fuel, engine temperature, fuel gauge, turn indicators and warning lights and provide the driver with an array of informations. Designed Smart HUD(Head-Up-Display) monitor system is composed TFT LCD, LCD Back light led, plane mirror, lens and controllers parts and it was assembled to intelligent integrated smart monitor system. Finally, we analyze intelligent integrated smart monitor system for driver safety vehicles and present the possibility to apply to smart intelligent HUD total monitor system for next generation.

Development of a Temperature Sensor for OLED Degradation Compensation Embedded in a-IGZO TFT-based OLED Display Pixel (a-IGZO TFT 기반 OLED 디스플레이 화소에 내장되는 OLED 열화 보상용 온도 센서의 개발)

  • Seung Jae Moon;Seong Gyun Kim;Se Yong Choi;Jang Hoo Lee;Jong Mo Lee;Byung Seong Bae
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.56-61
    • /
    • 2024
  • The quality of the display can be managed by effectively managing the temperature generated by the panel during use. Conventional display panels rely on an external reference resistor for temperature monitoring. However, this approach is easily affected by external factors such as temperature variations from the driving circuit and chips. These variations reduce reliability, causing complicated mounting owing to the external chip, and cannot monitor the individual pixel temperatures. However, this issue can be simply and efficiently addressed by integrating temperature sensors during the display panel manufacturing process. In this study, we fabricated and analyzed a temperature sensor integrated into an a-IGZO (amorphous indium-gallium-zinc-oxide) TFT array that was to precisely monitor temperature and prevent the deterioration of OLED display pixels. The temperature sensor was positioned on top of the oxide TFT. Simultaneously, it worked as a light shield layer, contributing to the reliability of the oxide. The characteristics of the array with integrated temperature sensors were measured and analyzed while adjusting the temperature in real-time. By integrating a temperature sensor into the TFT array, monitoring the temperature of the display became easier and more accurate. This study could contribute to managing the lifetime of the display.

Design of Implantable Wireless Sensor Node to Monitor the Livestock Body Temperature (가축의 실시간 체온 측정을 위한 이식형 무선 센서 노드 설계)

  • Kim, Hyun-Joong;Yang, Hyun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.585-588
    • /
    • 2009
  • Wireless Sensor Network (WSN) is consisted of lots of tiny sensor nodes with limited processing power and computing resources. Thus, the most critical and fundamental element of WSN technology is sensor node, which gathers environmental information and transmits it to the user application systems. Due to the technological advancement, sensor nodes are become smaller and more intelligent, hence, expand their application area. Specifically, implantable wireless sensor node technology, to monitor and treat disease by implanting tiny sensor nodes into human body or livestock, shows further directions of WSN. In this paper, we have designed an implantable wireless sensor node to monitor livestock body temperature in real time. We also discussed on the additional considerations to implement real time bio-monitoring systems.

  • PDF

A Study on improvement of plating equipment for fire prevention (도금 공장의 화재 예방을 위한 도금장비 개선에 관한 연구)

  • Kim, Sung-Jae;Kim, Sung-Gon;Yoo, Woo-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • A number of plating companies have been exposed to the risk of fire due to unexpected temperature increasing of water or other reasons in a plating bath. Since the companies are not able to forecast the unexpected temperature increasing of plating bath and most of raw materials in the bath have low ignition temperature, it is easy to be exposed to the risk of fire. Thus, in previous study, we tried to monitor and notice the dangerous change of temperature of water immediately to prevent the risk of fire from plating process. However, unfortunately previous studies were not able to shut out the fundamental cause of fire since bath temperature sensor can detect air temperature when the level sensor was malfunctioned. In this paper we developed the Teflon heater which contains a built in temperature sensor and improved plating equipment system. Teflon heater is improved using Pt $100{\Omega}$ sensor which can detect until $600^{\circ}C$. When the bath temperature sensor detects over $60^{\circ}C$ or the Teflon heater sensor detects over $240^{\circ}C$ they temporarily shut down the heater to control temperature. Also relay completely shuts down main power when detects instant temperature is detected over 5% of $240^{\circ}C$ by the heater sensor to prevent teflon melting down and fire spreads. Developed plating equipment system can monitor a real time temperature in the teflon tube and bath water. Therefore we think the proposed plating equipment can eliminate the possibility of fire in plating processes fundamentally.

Process Management System using a PC (PC를 이용한 공정관리시스템 개발)

  • Song, Joon-Yeob;Lee, Seung-Woo;Lee, Hyun-Yong
    • IE interfaces
    • /
    • v.6 no.2
    • /
    • pp.171-181
    • /
    • 1993
  • In this study, a process management system is designed that can automatically control the heat treating atmosphere, and a managment software is developed to monitor and control continously the heat treating process using a n interface device. Especially, a communication protocol is developed to control and monitor atmosphere condition, temperature, surrounding gas, and time. The developed interface device, called COMPORT SELECTOR is to send and receive information from PID controllers and PLC via RS-232C communication. This system will reduce manufacturing cost and cycle time, and improve the effectiveness of working process and quality.

  • PDF

Development of On -Line Work Roll Surface Monitoring System At Hot Strip Mill

  • Moon, Bae-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.53.4-53
    • /
    • 2001
  • This paper described about the system which can be inspect work roll surface for deciding a milling schedule and roll changing at hot strip mill in POSCO. Developed system consists of CCD camera, Xenon lamp with fiber bundle and mechanical control part. The water probe build up water pole between head of probe and roll surface to acquisite a good image from a work roll surface under the bad environment with steam, cooling water and high temperature. This system is possible to monitor a work roll surface of about 12${\times}$9mm. We have shown the validation of the developed system which can monitor the evolution of degradation on work roll surface.

  • PDF

Continuous deformation measurement for track based on distributed optical fiber sensor

  • He, Jianping;Li, Peigang;Zhang, Shihai
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • Railway tracks are the direct supporting structures of the trains, which are vulnerable to produce large deformation under the temperature stress or subgrade settlement. The health status of track is critical, and the track should be routinely monitored to improve safety, lower the risk of excess deformation and provide reliable maintenance strategy. In this paper, the distributed optical fiber sensor was proposed to monitor the continuous deformation of the track. In order to validate the feasibility of the monitoring method, two deformation monitoring tests on one steel rail model in laboratory and on one real railway tack in outdoor were conducted respectively. In the model test, the working conditions of simply supported beam and continuous beam in the rail model under several concentrated loads were set to simulate different stress conditions of the real rail, respectively. In order to evaluate the monitoring accuracy, one distributed optical fiber sensor and one fiber Bragg grating (FBG) sensor were installed on the lower surface of the rail model, the strain measured by FBG sensor and the strain calculated from FEA were taken as measurement references. The model test results show that the strain measured by distributed optical fiber sensor has a good agreement with those measured by FBG sensor and FEA. In the outdoor test, the real track suffered from displacement and temperature loads. The distributed optical fiber sensor installed on the rail can monitor the corresponding strain and temperature with a good accuracy.

APPLICATION OF ACOUSTIC EMISSION FOR DIAGNOSIS OF QUENCH IN SUPER CONDUCTIVE MAGNET AT CRYOGENIC TEMPERATURE

  • Lee, Joon-Hyun;Lee, Min-Rae;Kwon, Young-Kin;Song, Bong-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.160-165
    • /
    • 2007
  • It is well recently recognized that quench is one of the serious problems for the integrity of superconducting magnets, which is mainly attribute to the rapid temperature rising in the magnet due to some extrinsic factors such as conductor motion, crack initiation etc. In order to apply acoustic emission(AE) technique effectively to monitor and diagnose superconducting magnets, it is essential to identify the sources of acoustic emission. In this paper, an acoustic emission technique has been used to monitor and diagnose quenching phenomenon in racetrack shaped superconducting magnets at cryogenic environment of 4.2K. For these purposes special attention was paid to detect AE signals associated with the quench of superconducting magnets. The characteristics of AE parameters have been analyzed by correlating with quench number, winding tension of superconducting coil and charge rate by transport current.

  • PDF