• 제목/요약/키워드: temperature loading

검색결과 1,316건 처리시간 0.025초

Flexural performance of double skin composite beams at the Arctic low temperature

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.431-446
    • /
    • 2020
  • This paper presents the flexural performance of double skin composite beams (DSCBs) at different Arctic low temperatures. 12 DSCBs were prepared and tested under two-point loading at different Arctic low temperatures of 20, -30, -50, and -70℃. The studied parameters include low-temperature level (T), steel-faceplate thickness (t), shear span ratio (λ), and spacing of headed studs (S). The experimental investigations under two-point loading tests showed that flexural failure occurred to all DSCBs, even including the specimen designed with the small λ ratio of 2.9. The ultimate strength behaviours of DSCBs were improved due to the improved mechanical properties of constructional materials and the confinement on shear connectors. The DSCB subjected to two-point loading and low temperatures exhibits a five-stage working mechanism. The stiffness and strength indexes of DSCBs increase linearly with temperature and t value increasing, while decreasing as shear span ratio boosts. In the contrast, the change of S value from 150 to 200 mm has little effect on the ultimate strength behavior of DSCB.

Electro-Micromechanical 시험법을 이용한 Ni Nanowire Strands 강화 고분자 복합재료의 Sensing과 계면 물성 평가 (Sensing and Interfacial Evaluation of Ni Nanowire Strands/Polymer Composites using Electro-micromechanical Technique)

  • 김성주;정진규;박종만
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.141-144
    • /
    • 2005
  • Sensing and interfacial evaluation of Ni nanowire strands/polymer composites were investigated using Electro-micromechanical technique. Electro-micromechanical techniques can be used as sensing method for micro damage, loading, temperature of interfacial properties. Using Ni nanowire strands/silicone composites with different content, load sensing response of electrical contact resistivity was investigated under tensile and compression condition. The mechanical properties of Ni nanowire strands with different type/epoxy composites were measured using uniformed cyclic loading and tensile test. Ni nanowire strands/epoxy composites showed humidity and temperature sensing within limited ranges, 20 vol% reinforcement. Some new information on temperature and humidity sensing plus loading sensing of Ni nanowire strands/polymer composites could be obtained from the electrical resistance measurement as a new concept of the nondestructive interfacial evaluation.

  • PDF

Transesterification of Jatropha Oil over Ceria-Impregnated ZSM-5 for the Production of Bio-Diesel

  • Bhagiyalakshmi, Margandan;Vinoba, Mari;Grace, Andrews Nirmala
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.3059-3064
    • /
    • 2013
  • In this study transesterification of Triglycerides (TG) from Jatropha curcas oil (JCO) with methanol for production of biodiesel was investigated over cerium impregnated ZSM-5 catalysts. NaZSM-5 was synthesized in an alkaline medium and impregnated with cerium oxide by wet method using cerium nitrate as a source for cerium. They were characterized by X-ray diffraction (XRD), Thermogravimeteric analysis (TGA), $CO_2$-temperature programmed desorption, and $N_2$ adsorption/desorption analysis. XRD analysis showed decrease in intensity of the patterns with the increase in the ceria loading but crystallization of ceria to larger size is an evident for 10 and 15% loading. The optimal yield of transesterification process was found to be 90% under the following conditions: oil to methanol molar ratio: 1:12; temperature: $60^{\circ}C$; time: 1 h; catalyst: 5 wt %. Here the yield of fatty acid methyl ester (FAME) was calculated through $^1H$ NMR analysis. The investigation on catalyst loading, temperature, time and reusability illustrated that these ceria impregnated NaZSM-5's were found to be selective, recyclable and could yield biodiesel at low temperature with low methanol to oil ratio due to the presence of both Lewis and Bronsted basicity. Hence, from the above study it is concluded that ceria impregnated ZSM-5 could be recognized as a potential catalysts for biodiesel production in industrial processes.

Performance of fire damaged steel reinforced high strength concrete (SRHSC) columns

  • Choi, Eun Gyu;Kim, Hee Sun;Shin, Yeong Soo
    • Steel and Composite Structures
    • /
    • 제13권6호
    • /
    • pp.521-537
    • /
    • 2012
  • In this study, an experimental study is performed to understand the effect of spalling on the structural behavior of fire damaged steel reinforced high strength concrete (SRHSC) columns, and the test results of temperature distributions and the displacements at elevated temperature are analyzed. Toward this goal, three long columns are tested to investigate the effect of various test parameters on structural behavior during the fire, and twelve short columns are tested to investigate residual strength and stiffness after the fire. The test parameters are mixture ratios of polypropylene fiber (0 and 0.1 vol.%), magnitudes of applied loads (concentric loads and eccentric loads), and the time period of exposure to fire (0, 30, 60 and 90 minutes). The experimental results show that there is significant effect of loading on the structural behaviors of columns under fire. The loaded concrete columns result more explosive spalling than the unloaded columns under fire. In particular, eccentrically loaded columns are severely spalled. The temperature distributions of the concrete are not affected by the loading state if there is no spalling. However, the loading state affects the temperature distributions when there is spalling occurred. In addition, it is found that polypropylene fiber prevents spalling of both loaded and unloaded columns under fire. From these experimental findings, an equation of predicting residual load capacity of the fire damaged column is proposed.

Operational Condition and Temperature Study for Ethylbenzene Treating Biofilter

  • Son, Hun-Keun;Bradley A. Striebig
    • 한국환경보건학회지
    • /
    • 제29권4호
    • /
    • pp.4-9
    • /
    • 2003
  • Biofiltration can effectively remove both organic and inorganic air pollution compounds from both industrial and public sources. However, for the optimal biofiltration performance, it is necessary to gain a better understanding of the inner environment and destruction mechanisms within a biofilter. The effects of operational factors on removal efficiency was studied. Generally, removal efficiency decreases as the loading rate increases. Temperature, as one of the key factors that affect biofiltration design and performance, was also investigated. Conceptually, the biofilter reactor of this paper was divided into five different consecutive stages. The more ethylbenzene COD degraded at each stage, the higher the temperature increases observed compared to the temperatures of the previous stages. It was observed that for every 1 kg of ethylbenzene COD degraded per cubic meter of biofilter media, there was generally a 0.41$^{\circ}C$ increase in the temperature of that stage.

모의 유통 온도조건에 따른 MA 저장중 무순의 저장성 비교 (Comparison of Storability of Radish Sprouts According to Simulated Distribution Temperature Conditions)

  • 강호민;최인이;김일섭
    • 생물환경조절학회지
    • /
    • 제18권2호
    • /
    • pp.166-170
    • /
    • 2009
  • 국내 싹채소 유통 온도를 조사해본 결과 예냉하여 포장 후 출하할 때까지 일정기간 5도에서 보관되었으며, 수송은 10도 이하의 온도를 유지하였다. 그러나 판매소에서 저장고에 입고될 때까지 수시간 동안 상온에 다시 노출되었고 이후 10도 수준의 판매소의 저장고에 입고되고 있었다. 이러한 유통조건을 모의처리 하였는데 5$^{\circ}C$로 계속 유지된 대조구와 10$^{\circ}C$, 20$^{\circ}C$, 30$^{\circ}C$에서 약 6시간 저장한 후 10$^{\circ}C$에 17일간 저장하여 비교하였다. 25$^{\circ}C$에서 암상태로 5일간 재배한 무를 명상태에서 l일간 녹화 후 수확하여 25 ${\mu}$m ceramic film으로 포장하여 앞서 설명한 5가지 유통조건에서 유통저장하였다. 상하차 처리온도가 높을수록 높은 생체중 감소와 외관상 품질 저하가 발생하였다. 포장내 이산화탄소 농도는 저장경과 l일후 상승하였고, 산소 농도도 저장경과 1일후 급격히 낮아지는 것을 볼 수 있었고, 에틸렌 발생량도 고온 노출에 인해 저장 경과 l일후 빠르게 증가하였다. 이에 반해 노출온도가 낮을수록 외관상 품질등을 비롯한 저장성이 향상되었다.

콘크리트에 표면매입 보강된 탄소섬유 판의 온도에 따른 부착성능 (Bond Capacity of Near-Surface-Mounted CFRP Plate to Concrete Under Various Temperatures)

  • 서수연;김정훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권4호
    • /
    • pp.75-83
    • /
    • 2013
  • 본 연구에서는 탄소섬유판을 이용하여 표면매입 보강된 철근콘크리트 부재의 내화성능에 관한 연구로서 온도변화에 따른 탄소섬유 판의 인장시험, 에폭시의 상태변화 실험, 그리고 온도변화에 따른 부착성능에 관한 일련의 실험연구를 실시하였다. 실험연구로부터, 부착강도의 측면에서 콘크리트를 보강하기 위한 효율적인 보강방법은 표면매입 보강이며, 이 보강법은 상온에서는 그 효과가 매우 높지만, 비록 낮은 온도일지라도 주변온도가 높아질 경우에는 보강효과가 현저히 저하될 수 있음을 확인하였다. 특히, 주변 온도가 에폭시의 화학적 성질이 변화하기 시작하는 유리전이 온도에 근접할 경우, 부착기능이 상실되기 시작하므로 구조물의 안전한 내화설계를 위해서는 부착용으로 사용되는 에폭시의 성능을 개선시키고 또한 섬유보강재의 성능개선이 시급한 것으로 사료된다.

혐기성 생물막법에 의한 유기성 배수의 처리 (Treatment of Organic Wastewater by the Anaerobic Fixed-Film Process)

  • 김용대;정경훈
    • 한국환경보건학회지
    • /
    • 제17권2호
    • /
    • pp.41-47
    • /
    • 1991
  • A study on the effects of volumetric loading rate, surface loading rate and hydraulic. retention time (HRT) for the anaerobic treatment was conducted with the anaerobic fixed-film process using synthetic wastewater at lower temperature than that of conventional anaerobic treatment. The results are as follows 1. Alkalinity and pH value decreased as the hydraulic retention time increased 2. Increase of the volumetric lodaing rate led to increasl of effluent COD concentration and decrease of COD removal efficiency. 3. The removed volumetric loading rate increased linearly according to the increase of the volumrtric loading rate. 4. Similarly, the linear increase of the removed surface loading rate was noticed with an increase of the surface loading rate.

  • PDF

Cyclic behavior of superelastic shape memory alloys (SMAs) under various loading conditions

  • Hu, Jong Wan
    • 도시과학
    • /
    • 제7권1호
    • /
    • pp.5-9
    • /
    • 2018
  • The nickel-titanium shape memory alloy (SMA), referred to as Nitinol, exhibits a superelastic effect that can be restored to its original shape even if a significant amount of deformation is applied at room temperature, without any additional heat treatment after removal of the load. Owing to these unique material characteristics, it has widely used as displacement control devices for seismic retrofitting in civil engineering fields as well as medical, electrical, electronic and mechanical fields. Contrary to ordinarty carbon steel, superelastic SMAs are very resistant to fatigue, and have force-displacement properties depending on loading speed. The change for the mechanical properties of superelastic SMAs are experimentally inviestigated in this study when loading cycle numbers and loading speeds are different. In addition, the standardized force-displacement properties of such superelastic SMAs are proposed with an aim to efficiently design the seismic retrofitting devices made of these materials.

이축하중을 받는 십자형 시편의 파괴인성 및 구속효과 평가 (Evaluation of Fracture Toughness and Constraint Effect of Cruciform Specimen under Biaxial Loading)

  • 김종민;김민철;이봉상
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.62-69
    • /
    • 2016
  • Current guidance considers that uniaxially loaded specimen with a deep crack is used for the determination of the ductile-to-brittle transition temperature. However, reactor pressure vessel is under biaxial loading in real and the existence of deep crack is not probable through periodic in-service-inspection. The elastic stress intensity factor and the elastic-plastic J-integral which were used for crack-tip stress field and fracture mechanics assessment parameters. The difference of the loading condition and crack geometry can significantly influence on these parameters. Thus, a constraint effect caused by differences between standard specimens and a real structure can over/underestimate the fracture toughness, and it affects the results of the structural integrity assessment, consequentially. The present paper investigates the constraint effects by evaluating the master curve $T_0$ reference temperature of PCVN (Pre-cracked Charpy V-Notch) and small scale cruciform specimens which was designed to simulate biaxial loading condition with shallow crack through the fracture toughness tests and 3-dimensional elastic-plastic finite element analyses. Based on the finite element analysis results, the fracture toughness values of a small scale cruciform specimen were estimated, and the geometry-dependent factors of the cruciform specimen considered in the present study were determined. Finally, the transferability of the test results of these specimens was discussed.