• Title/Summary/Keyword: temperature loading

Search Result 1,316, Processing Time 0.023 seconds

A Numerical Study on the Response of Jointed Rock Mass Due to Thermal Loading of Radioactive Waste (방사성 폐기물의 열하중에 의한 절리암반의 거동에 관한 수치해석적 연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.102-118
    • /
    • 1994
  • Thermomechanical analysis is conducted on the radioactive repository in deep rock mass considering the in-situ stress, excavation and thermal loading of a radioactive waste. Thermomechanical properties of a discontinuous rock mass are estimated by a theoretical method so called sequential analysis. Using the estimated properties as input for finite element analysis, the influence on temperature distribution and thermal stress is analyzed within the scope of 2-dimensional steady state and transient heat transfer and coupled thermal elastic plastic behaviour. Granitic rock mass is taken for this analysis. The analysis is done for two different rock mass conditions, i.e. continuous-homogeneous and highly jointed conditions, for the purpose of comparison. In the case of steady state, the extent of disturbed zone around the storage tunnel due to the heat production of the spent-fuel canister varies depending on the thermomechanical properties of the rock mass. In the case of transient analyses, the response of the jointed rock mass to the thermal loading after radioactive waste disposal varies significantly with time, resulting in dramatic changes in the both size and location of disturbed zone.

  • PDF

Solid-State 51V NMR and Infrared Spectroscopic Study of Vanadium Oxide Supported on $ZrO_2-WO_3$

  • 손종락;이만호;도임자;배영일
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.8
    • /
    • pp.856-862
    • /
    • 1998
  • Vanadium oxide catalyst supported on ZrO2-WO3 was prepared by adding the Zr(OH)4 powder into a mixed aqueous solution of ammonium metavanadate and ammonium metatungstate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed using solid-state 51V NMR and FTIR. In the case of calcination temperature at 773 K, for the samples containing low loading V2O5 below 18 wt % vanadium oxide was in a highly dispersed state, while for samples containing high loading V2O5 equal to or above 18 wt % vanadium oxide was well crystallized due to the V2O5 loading exceeding the formation of monolayer on the surface of ZrO2-WO3. The ZrV2O7 compound was formed through the reaction Of V2O5 and ZrO2 at 873 K and the compound decomposed into V2O5 and ZrO2 at 1073 K, which were confirmed by FTIR and 51V NMR.

Photothermoelastic interactions under Moore-Gibson-Thompson thermoelasticity

  • Kumar, Rajneesh;Sharma, Nidhi;Chopra, Supriya
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.459-483
    • /
    • 2022
  • In the present work, a new photothermoelastic model based on Moore-Gibson-Thompson theory has been constructed. The governing equationsfor orthotropic photothermoelastic plate are simplified for two-dimension model. Laplace and Fourier transforms are employed after converting the system of equations into dimensionless form. The problem is examined due to various specified sources. Moving normal force, ramp type thermal source and carrier density periodic loading are taken to explore the application of the assumed model. Various field quantities like displacements, stresses, temperature distribution and carrier density distribution are obtained in the transformed domain. The problem is validated by numerical computation for a given material and numerical obtained results are depicted in form of graphs to show the impact of varioustheories of thermoelasticity along with impact of moving velocity, ramp type and periodic loading parameters. Some special cases are also explored. The results obtained in this paper can be used to design various semiconductor elements during the coupled thermal, plasma and elastic wave and otherfieldsin thematerialscience, physical engineering.

Effect of temperature gradient on track-bridge interaction

  • Kumar, Rakesh;Upadhyay, Akhil
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • Considerable longitudinal rail forces and displacements may develop in continuous welded rail (CWR) track on long-span bridges due to temperature variations. The track stability may be disturbed due to excessive relative displacements between the sleepers and ballast bed and the accompanied reduction in frictional resistance. For high-speed tracks, however, solving these problems by installing rail expansion devices in the track is not an attractive solution as these devices may cause a local disturbance of the vertical track stiffness and track geometry which will require intensive maintenance. With reference to temperature, two actions are considered by the bridge loading standards, the uniform variation in the rail and deck temperature and the temperature gradient in deck. Generally, the effect of temperature gradient has been disregarded in the interaction analysis. This paper mainly deals with the effect of temperature gradient on the track-bridge interaction with respect to the support reaction, rail stresses and stability. The study presented in this paper was not mentioned in the related codes so far.

Mechanical and acoustic behaviors of brine-saturated sandstone at elevated temperature

  • Huang, Yan-Hua;Yang, Sheng-Qi
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.215-225
    • /
    • 2019
  • The mechanical behavior of rock is essential to estimate the capacity and long-term stability of $CO_2$ storage in deep saline aquifers. As the depth of reservoir increases, the pressure and temperature that applied on the rock increase. To answer the question of how the confining pressure and temperature influence the mechanical behavior of reservoir rock, triaxial compression experiments were carried out on brine-saturated sandstone at elevated temperature. The triaxial compressive strength of brine-saturated sandstone was observed to decrease with increasing testing temperature, and the temperature weakening effect in strength enhanced with the increase of confining pressure. Sandstone specimens showed single fracture failures under triaxial compression. Three typical regions around the main fracture were identified: fracture band, damaged zone and undamaged zone. A function was proposed to describe the evolution of acoustic emission count under loading. Finally, the mechanism of elevated temperature causing the reduction of strength of brine-saturated sandstone was discussed.

Kinetics of Anaerobic Digestion : Temperature Effects on Highly Loaded Digesters (혐기성소화(嫌氣性消化)의 동역학(動力學) : 고부하시(高負荷時)의 온도영향(溫度影響))

  • Chang, Duk;Chung, Tai Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.59-67
    • /
    • 1988
  • Anaerobic digestion at the temperature of $35-55^{\circ}C$ was conducted using an artificial sludge of uniform composition. The hydraulic retention time of 5 days was chosen because the temperature effect was effectively shown at a high loading. Inhibition of the methane fermentation decreased as the temperature increased. Acid fermentation was prevalent at the mesophilic and intermediate temperatures, while active methane fermentation took place at $55^{\circ}C$. Temperature not only affects activity of the microorganisms, but also affects physical and chemical properties of the sludge, Digestion inhibition was much reduced when the feed sludge was diluted, and active methane fermentation was possible at all temperatures. The digestion efficiency was governed by the organic loading rate as well as the hydraulic 10ading rate. No reduction of the digestion efficiency at $40-45^{\circ}C$, which had been referred to a critical temperature range, was observed. The digestion efficiency increased monotonically from mesophilic to thermophilic range. Improved settling properties of digested sludge was also recorded at higher temperatures.

  • PDF

Development of High Temperature Creep Properties Evaluation Method using Miniature Specimen (미소시험편을 이용한 고온 크리프 특성 평가법 개발)

  • Yu, Hyo-Sun;Baek, Seung-Se;Lee, Song-In;Ha, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.43-48
    • /
    • 2000
  • In this study, a small punch creep(SP-Creep) test using miniaturized specimen$(10{\times}10{\times}0.5mm)$ has been described for the development of the newly semi-destructive creep test method for high temperature structural components such as headers and tubes of boiler turbine casino and rotor and reactor vessel. The SP-Creep testing technique has been applied to 2.25Cr-1Mo(STBA24) steel used widely as boiler tube material and the creep test temperature are varied at $550^{\circ}C{\sim}600^{\circ}C$. The overall deformations of SP-Creep curves are definitely depended with applied load and creep test temperature and show the creep behaviors of three steps like conventional uniaxial creep curves. The steady state creep rate${\delta}_{ss}$ of SP-Creep curve for miniaturized specimen increases with increasing creep temperature, but the exponential value with creep loading is decreased. The activation energy$(Q_{spc})$ during SP-Creep deformation with various test temperatures shows 605.7kJ/mol that is g.eater than 467.4kJ/mol reported in uniaxial creep test. This may be caused by the difference of stress states during creep deformation In two creep test. But from the experimental results, e.g. SP-Creep curve behaviors, the steady state creep rate${\delta}_{ss}$ with creep temperature, and the exponential value(n) with creep loading, it can be summarized that the SP-Creep test may be a useful test method to evaluate the creep properties of the heat resisting material.

  • PDF

The Influence of Hydrogen Loading on Radiation Sensitivity of Fiber Bragg Gratings (광섬유 브래그 격자의 방사선 민감도에 대한 수소로딩의 영향)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2461-2465
    • /
    • 2013
  • This paper investigates the influence of hydrogen loading process on the radiation sensitivity of fiber Bragg gratings (FBG). We made the FBG inscribed in the same commercial Ge-doped fiber with different hydrogen loading periods. We measured the Bragg wavelength shift (BWS) of the FBG exposed to gamma-radiation up to a dose of 18 kGy, and evaluated the change of full width at half maximum (FWHM) and the FBG temperature sensitivity coefficient after irradiation. Varying hydrogen loading parameter led to BWS differences up to nearly a factor of two.

An Experimental Study on the Strengthening Effect of RC Beam subjected to Repeated Loading during CFS Strengthening Process (탄소섬유 보강 중에 반복하중을 받은 RC보의 보강효과에 관한 실험적 연구)

  • Jang, Hee-Suk;Kim, Hee-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.183-189
    • /
    • 2006
  • When RC structures are repaired or strengthened using FRP, it is required to cure for some Period under certain air temperature and then it is hopeful to avoid detrimental action caused by external vibration sources during that period. Therefore, an effect of repeated loading during Carbon Fiber Sheet(CFS) strengthening Process on the strengthening efficiency is studied through an experiment for a number of RC beams. Experimental results showed that the curing time of 24 hours without any repeated loading after CFS attachment were recommended for 1 ply strengthening, and 12 hours for 2 plies strengthening.

An Experimental Study on Filtration Efficiency and BPT Characteristics by PM Loading in Partial-diesel Particulate Filter (포집량에 따른 p-DPF의 정화효율 및 BPT 특성에 관한 실험적 연구)

  • Oh, Kwang-Chul;Lee, Kyung-Bok;Lee, Chun-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.147-154
    • /
    • 2012
  • The number of vehicles applied diesel engine are rapidly rising for fuel economy. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced emission regulation. The Diesel Particulate Filter (DPF) system is considered as the most efficiency method to reduce particulate matter (PM) by car makers but also in retrofit market. In recently, various kinds of partial flow DPF are widely used for proper filtration performance and reducing of pressure drop but it is difficult to define the characteristics of these filters because the filtration mechanism is obscure according to the status of these systems. In this paper we investigated the characteristics of cell open type DPF according to the status of filter especially, PM loading. The PM loading mass in the p-DPF are predicted from increase of differential pressure of DPF and the trend of filtration efficiency so that we can measure filtration efficiency and Balance Point Temperature (BPT) of this p-DPF according to PM loading.