856 Bull, Korean Chem. Soc. 1998, Vol. 19, No. 8

Jong Rack Sohn et al.

- 6. Cho, I.; Lee, J.-Y. J. Polym. Sci., Polym. Lett. Ed. 1983, 21, 389.
- Florianczyk, T.; Sullivan, C.; Janovic, Z.; Vogl, O. Polym. Bull. 1981, 5, 521.
- 8. Xi, F.; Bassett, W.; Vogl, O. J. Polym. Sci.: Polym. Chem. Ed. 1983, 21, 891.
- 9. Williams, J. K.; Wiley, D. W.; McKusick, B. C. J. Am. Chem. Soc. 1962, 84, 2210.
- Hall, Jr. H. K.; Ykman, P. J. Am. Chem. Soc. 1975, 97, 800.
- Hail, Jr. H. K.; Rasoul, H. A. A.; Gillard, M.; Abdelkader, M.; Nogues, P.; Sentman, R. C. Tetrahedron Lett. 1982, 23, 603.
- 12. Hall, Jr. H. K.; Padias, A. B. Acc. Chem. Res. 1990, 23, 3.
- 13. Kresel, M.; Garbratski, U.; Kohn, D. H. J. Polym. Sci., Part A 1964, 2, 105.
- 14. Gilath, A.; Ronel, S. H.; Shmueli, M.; Kohn, D. H. J. Appl. Polym. Sci. 1970, 14, 1491.

- 15. Ronel, S. H.; Shmueli, M.; Kohn, D. H. J. Polym. Sci., A-1 1969, 7, 2209.
- Lieberson, A.; Kohn, D. H. J. Polym. Sci., Polym. Chem. Ed. 1974, 12, 2435.
- Kharas, G.; Kohn, D. H. J. Polym. Sci., Polym. Chem. Ed. 1983, 21, 1457.
- Kharas, G.; Kohn, D. H. J. Polym. Sci., Polym. Chem. Ed. 1984, 22, 583.
- Angelorici, M. M.; Kohn, D. H. J. Appl. Polym. Sci. 1990, 40, 485.
- 20. Tanaka, H. Trends Polym. Sci. 1993, I, 361.
- 21. Tanaka, H. Trends Polym. Sci. 1996, 4, 106.
- 22. Lee, J.-Y. Polym. Bull. 1996, 36, 525.
- 23. Moore, A. H. F. Org. Syn. Coll. Vol. 4 1963, 84.
- 24. Corson, B. B.; Stoughton, R. W. J. Am. Chem. Soc. 1928, 50, 2825.
- 25. Lee, J.-Y.; Lee, H.-J.; Kim, M.-Y. Polym. Bull. 1997, 38, 27.

Solid-State ⁵¹V NMR and Infrared Spectroscopic Study of Vanadium Oxide Supported on ZrO₂-WO₃

Jong Rack Sohn*, Man Ho Lee, Im Ja Doh¹, and Young II Pae[†]

Department of Industrial Chemistry, Engineering College, Kyungpook National University, Taegu 702-701, Korea [†]Department of Chemistry, University of Ulsan, Ulsan 680-749, Korea

Received April 15, 1998

Vanadium oxide catalyst supported on ZrO_2 -WO₃ was prepared by adding the $Zr(OH)_4$ powder into a mixed aqueous solution of ammonium metavanadate and ammonium metatungstate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed using solid-state ⁵¹V NMR and FTIR. In the case of calcination temperature at 773 K, for the samples containing low loading V₂O₅ below 18 wt % vanadium oxide was in a highly dispersed state, while for samples containing high loading V₂O₅ equal to or above 18 wt % vanadium oxide was well crystallized due to the V₂O₅ loading exceeding the formation of monolayer on the surface of ZrO_2 -WO₃. The ZrV_2O_7 compound was formed through the reaction of V₂O₅ and ZrO_2 at 873 K and the compound decomposed into V₂O₅ and ZrO_2 at 1073 K, which were confirmed by FTIR and ⁵¹V NMR.

Introduction

Vanadium oxides are widely used as catalysts in oxidation reactions, *e.g.*, the oxidation of sulfur dioxide, carbon monoxide, and hydrocarbons.¹⁻⁴ These systems have also been found to be effective catalysts for the oxidation of methanol to methylformate.^{5,6} Much research has been done to understand the nature of active sites, the surface structure of catalysts as well as the role played by the promoter of the supported catalysts, using infrared (IR), X-ray diffraction (XRD), electron spin resonance (E.S.R) and Raman spectroscopy.⁶⁻⁹ So far, silica, titania, zirconia and alumina¹⁰⁻¹⁷ have been commonly employed as the vanadium oxide supports, and comparatively very few works have been reported for binary oxide, ZrO₂-WO₃ as the support for vanadium oxide.

It is well known that the dispersion and the structural features of supported species can strongly depend on the support. Structure and other physicochemical properties of supported metal oxides are considered to be in different states compared with bulk metal oxides because of their interaction with the supports. Solid-state nuclear magnetic resonance (NMR) methods represent a novel and promising approach to these systems. Since only the local environment of a nucleus under study is probed by NMR, this method is well suited for the structural analysis of disordered systems such as the two-dimensional surface vanadium oxide phases which is of particular interest in the present study. In addition to the structural information provided by NMR methods, the direct proportionality of the signal intensity to the number of contributing nuclei makes NMR be useful

^{*}Author to whom correspondence should be addressed.

for quantitative studies. In the present investigation, the techniques of solid-state ⁵¹V NMR and Fourier transform infrared (FTIR) have been utilized to characterize a series of V_2O_5 samples supported on ZrO_2 -WO₃ with various vanadia loadings.

Experimental

Catalyst Preparation. Precipitate of $Zr(OH)_4$ was obtained by adding aqueous ammonia slowly into an aqueous solution of zirconium oxychloride at room temperature with stirring until the pH of mother liquor reached about 8. The precipitate thus obtained was washed thoroughly with distilled water until chloride ion was not detected, and was dried at room temperature for 12 h. The dried precipitate was powdered below 100 mesh.

The catalysts containing various vanadium oxide content were prepared by adding the $Zr(OH)_4$ powder into a mixed aqueous solution of ammonium metavanadate (NH₄VO₃) and ammonium metatungstate [(NH₄)₆(H₂W₁₂O₄₀) · nH₂O] followed by drying and calcining at high temperatures for 1.5h. This series of catalysts are denoted by their weight percentage of V₂O₅, where the content of WO₃ in all catalysts was fixed as 15 wt %. For example, 3-V₂O₅/ZrO₂-WO₃ indicates the catalyst containing 3 wt % V₂O₅.

Characterization. FTIR absorption spectra of V_2O_5/ZrO_2 -WO₃ powders were measured by the KBr disk method over the range 1200-400 cm⁻¹. The samples for the KBr disk method were prepared by grinding a mixture of the catalyst and KBr powders in an agate mortar and pressing them in the usual way. FTIR spectra of ammonia adsorbed on the catalyst were obtained in a heatable gas cell at room temperature using a Mattson Model GL 6030E spectrophotometer. The self-supporting catalyst wafers contained about 9 mg/cm². Prior to obtaining the spectra the samples were heated under vacuum at 673-773 K for 1.5 h.

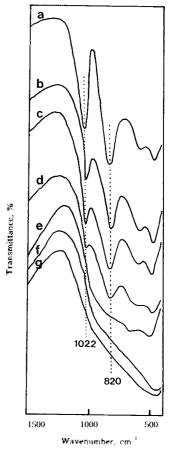
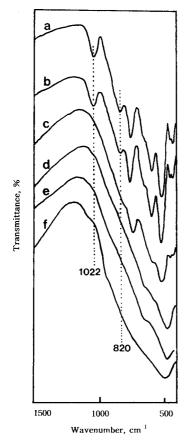
⁵¹V NMR spectra were measured by a Varian Unity Inova 300 spectrometer with a static magnetic field strength of 7.05 T. Larmor frequency was 78.89 MHz. The ordinary single pulse sequence was used, in which the pulse width was set at 2.8 s and the acquisition time was 0.026 s. The spectral width was 500 kHz. The number of scans was varied from 400 to 4,000, depending on the concentration of vanadium. The signal was acquired from the time point 4s after the end of the pulse. The sample was static, and its temperature was ambient (294 K). The spectra were expressed with the signal of VOCl₃ being 0 ppm, and the higher frequency shift from the standard was positive. Practically, solid NH₄VO₃ (- 571.5 ppm) was used as the second external reference.¹⁸

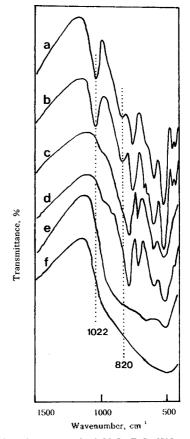
Results and Discussion

Infrared Spectra. Figure 1 shows IR spectra of V_2O_3/ZrO_2 -WO₃ catalysts with various content calcined at 773 K for 1.5 h. Although with samples below 18 wt % of V_2O_5 the definite peaks were not observed, the absorption bands at 1022 and 820 cm⁻¹ appeared for $18-V_2O_5/ZrO_2$ -WO₃, 23- V_2O_5/ZrO_2 -WO₃, 28- V_2O_5/ZrO_2 -WO₃ and pure V_2O_5 containing high V_2O_5 content. The band at 1022 cm⁻¹ is assigned to the V=O stretching vibration, while that at 820 cm⁻¹ is

attributable to the coupled vibration between V=O and to V-O-V.¹⁹ Generally, the IR band of V=O in crystalline V_2O_3 shows at 1020-1025 cm⁻¹ and the Raman band at 995 cm⁻¹.^{2,20} The intensity of the V=O absorption gradually decreased with increasing ZrO₂ content, although the band position did not change. As shown in Figure 1, the catalysts at vanadia loadings below 18 wt % gave no absorption bands due to crystalline V_2O_3 . This observation suggests that vanadium oxide below 18 wt % is in a highly dispersed state. It is reported that V_2O_3 loading exceeding the formation of monolayer on the surface of ZrO₂ is well crystallized and observed in the spectra of IR and ⁵¹V solid state NMR.²¹

As shown in Figure 1, for $4-V_2O_5/ZrO_2-WO_3$ and $12-V_2O_5/ZrO_2-WO_3$ calcined at 773 K the crystalline V_2O_5 was not observed in their IR spectra, suggesting the monolayer dispersion of V_2O_5 on the surface ZrO_2-WO_3 as the amorphous phase. However, it is necessary to examine the formation of crystalline V_2O_5 as a function of calcination temperature. Variations of IR spectra against calcination temperature for $4-V_2O_5/ZrO_2-WO_3$ and $12-V_2O_5/ZrO_2-WO_3$ are shown in Figures 2 and 3, respectively. For both catalysts, there are no V=O stretching bands at 1022 cm⁻¹ from 673 to 973 K of the calcination temperature, indicating no formation of crystalline V_2O_5 . However, as shown in Figures 2 and 3, V=O stretching bands due to crystalline V_2O_5 at 1073 K and 1173 K appeared at 1022 cm⁻¹ together with lattice vibration


Figure 1. Infrared spectra of catalysts calcined at 773 K: (a) V_2O_5 , (b) $28 \cdot V_2O_5/ZrO_2 \cdot WO_3$, (c) $23 \cdot V_2O_5/ZrO_2 \cdot WO_3$, (d) $18 \cdot V_2O_5/ZrO_2 \cdot WO_3$, (e) $12 \cdot V_2O_5/ZrO_2 \cdot WO_3$, (f) $8 \cdot V_2O_5/ZrO_2 \cdot WO_3$, (g) $4 \cdot V_2O_5/ZrO_2 \cdot WO_3$.

bands of V₂O₅ and WO₃ below 900 cm^{-1,22,23} The formation of crystalline V₂O₅ above 1073 K can be explained in terms of the decomposition of ZrV₂O₇ compound which was formed through the reaction of V₂O₅ and ZrO₂ at 873-973 K. In this work, on X-ray diffraction patterns the cubic phase of ZrV₂O₇ was observed in the samples calcined at 873 K and for sample calcined at 1173 K the ZrV₂O₇ phase disappeared due to the decomposition of ZrV₂O₇, leaving the V₂O₅ phase and the monoclinic phase of ZrO₂. These results are in good agreement with those of ⁵¹V solid state NMR described later. In fact, it is known that the formation of ZrV₂O₇ from V₂O₅ and ZrO₂ occurs at 873 K of calcination temperature and the ZrV₂O₇ decomposes into ZrO₂ and V₂O₅ at 1073 K.^{21,24}

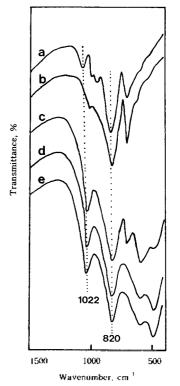

Figure 4 shows IR spectra of $28-V_2O_3/ZrO_2$ -WO₃ catalysts calcined at 673-1073 K for 1.5 h. Unlike $4-V_2O_5/ZrO_2$ -WO₃ and $12-V_2O_3/ZrO_2$ -WO₃ catalysts, for $28-V_2O_5/ZrO_2$ -WO₃ crystalline V_2O_5 appeared at lower calcination temperature from 673 K to 873 K and consequently V=O stretching band was observed at 1022 cm^{-1} . This is because V_2O_5 loading exceeding the formation of monolayer on the surface of ZrO₂ is well crystallized.²¹ However, at 973 K all V_2O_5 reacted with ZrO₂ and changed into ZrV₂O₇ so that V= O stretching at 1022 cm^{-1} disappeared completely, as shown in Figure 4. At 1073 K of calcination temperature some of ZrV₂O₇ decomposed into V_2O_5 and ZrO₂ and then V=O stretching band due to the crystalline V_2O_5 was again observed at 1022 cm^{-1} . These results are in good agreement with those of ⁵¹V solid state NMR.

Figure 2. Infrared spectra of $4-V_2O_2/2rO_2-WO_3$ calcined at (a) 1173 K, (b) 1073 K, (c) 973 K, (d) 873 K, (e) 773 K, and (f) 673 K.

Figure 3. Infrared spectra of $12-V_2O_5/ZrO_2-WO_3$ calcined at (a) 1173 K, (b) 1073 K, (c) 973 K, (d) 873 K, (e) 773 K, and (f) 673 K.

Figure 4. Infrared spectra of $28-V_2O_5/ZrO_2-WO_3$ calcined at (a) 1073 K, (b) 973 K, (c) 873 K, (d) 773 K, and (e) 673 K.

⁵¹V NMR and IR Study of V₂O₅/ZrO₂-WO₃

⁵¹V Solid State NMR Spectra. Solid state NMR methods represent a novel and promising approach to vanadium oxide catalytic materials. The solid state ⁵¹V NMR spectra of V_2O_3/ZrO_2 -WO₃ catalysts calcined at 773 K are shown in Figure 5. There are three types of signals in the spectra of catalysts with varying intensities depending on V_2O_5 content. At the low loadings up to 12 wt% V_2O_5 a shoulder at about 260 ppm and the intense peak at 590-650 ppm are observed. The former is assigned to the surface vanadium-oxygen structures surrounded by a distorted octahedron of oxygen atoms, while the latter is attributed to the tetrahedral vanadium-oxygen structures.^{25,26}

However, the surface vanadium oxide structure is remarkably dependent on the metal oxide support material. Vanadium oxide on TiO₂ (anatase) displays the highest tendency to be 6-coordinated at low surface coverages, while in the case of γ Al₂O₃ a tetrahedral surface vanadium species is the favored.25 As shown in Figure 5, at low vanadium loading on ZrO2-WO3 a tetrahedral vanadium species is exclusively dominant compared with a octahedral species. In general, it is known that low surface coverages favor a tetrahedral coordination of vanadium oxide, while at higher surface coverages vanadium oxide becomes increasingly octahedral-coordinated. As shown in Figure 5, the peak shapes for the vanadium species on ZrO2-WO3 are narrower and more symmetric compared to those of vanadium species on TiO₂ or γ-Al₂O₃ reported by other reporters.^{25,26} It seems likely that the different physical and chemical properties of ZrO2-WO3 from those of TiO2 or YAI2O3 affect the symmetry of the surface vanadium-oxygen structures.

Bull. Korean Chem. Soc. 1998, Vol. 19, No. 8 859

Increasing the V_2O_5 content on the ZrO₂-WO₃ surface changes the shape of the spectrum to a rather intense and sharp peak at about 300 ppm (δ_1) and a broad low-intensity peak at about 1400 ppm (δ_{\parallel}), which are due to the crystalline V₂O₅ of square pyramid coordination.²⁵ These observations of crystalline V2O3 for samples containing high V₂O₅ content above 12 wt % are in good agreement with the results of the IR spectra in Figure 1. Namely, this is because V₂O₅ loading exceeding the formation of monolayer on the surface of ZrO₂-WO₃ is well crystallized.²¹ Moreover, the increase in V2O5 content resulted appearance of additional signals with a peak in the range from 810 to 840 ppm. The intensity of the signal increases with increase in V₂O₅ loading. Different peak positions normally indicate the differences of the spectral parameters and are observed due to different local environments of vanadium nuclei,25-29 Thus species at $-590 \sim -650$ ppm and $-810 \sim -840$ ppm can be attributed to two types of tetrahedral vanadium complexes with different oxygen environments. Namely, the signals at -590~-650 ppm can be attributed to the surface vanadium complexes containing OH groups or water molecules in their coordination sphere,²⁶ because the evacuation treatment decreases the intensities remarkably. On the other hand, the signals at -810--840 ppm are due to the surface tetrahedral vanadium complexes which do not contain OH groups or adsorbed water molecules.

It is necessary to examine the effect of calcination temperature on the surface vanadium oxide structure. The spectra of $4-V_2O_5/ZrO_2-WO_3$ and $12-V_2O_5/ZrO_2-WO_3$ containing lower vanadium oxide content and calcined at various temperatures are shown in Figures 6 and 7, respectively. The shape of the spectrum is very different depending on the cal-

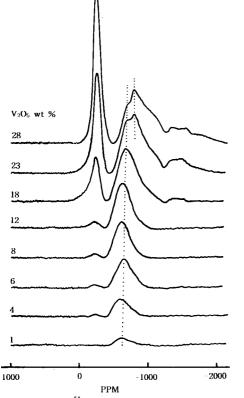
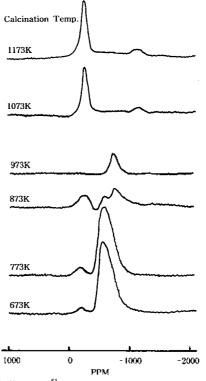
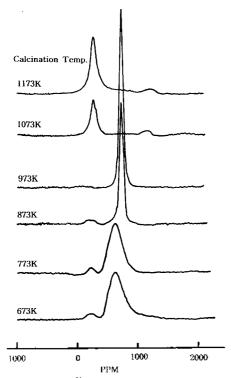
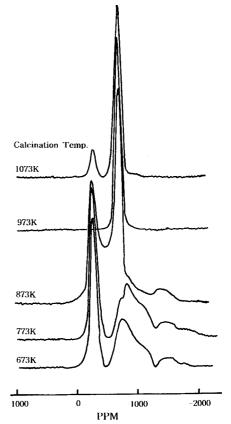
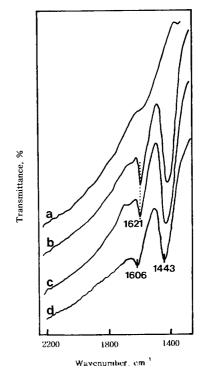




Figure 5. Solid state 51 V NMR spectra of V₂O₅/ZrO₂-WO₃ catalysts calcined at 773 K.

Figure 6. Solid state 51 V NMR spectra of $4-V_2O_5/ZrO_2-WO_3$ calcined at different temperatures.


860 Bull. Korean Chem. Soc. 1998, Vol. 19, No. 8


Figure 7. Solid state ${}^{51}V$ NMR spectra of $12-V_2O_5/ZtO_2-WO_3$ calcined at different temperatures.

cination temperature. For both samples calcined at lower temperatures (673-773 K), two peaks at about 260 ppm and -590~-650 ppm due to the octahedral and tetrahedral vanadium-oxygen structures are shown, indicating the monolayer dispersion of V2O5 on the ZrO2 surface, in good agreement with the results of IR spectra of Figures 2 and 3. However, for samples calcined at 873 K, in addition to the above two peaks a sharp peak at 800 ppm due to crystalline ZrV₂O₇ appeared, indicating the formation of a new compound from V₂O₅ and ZrO₂ at high calcination temperature. For samples calcined at 873-1073 K X-ray diffraction patterns of ZrV₂O₇ were observed. Roozeboom et al. reported the formation of ZrV_2O_7 from V_2O_5 and ZrO_2 at 873 K of calcination temperature.24 At 973 K of calcination temperature only a peak at 802 ppm due to the ZrV₂O₇ phase appeared, saying that most of V₂O₅ on the surface of ZrO₂-WO₃ was consumed to form the ZrV_2O_7 compound. However, at 1073-1173 K of calcination temperature we can observe only the peaks of crystalline V2O5 at 290 ppm and about 1200 ppm, indicating the decomposition of ZrV_2O_7 . These results are in good agreement with those of IR spectra in Figures 2 and 3.

The spectra of $28 \cdot V_2O_5/ZrO_2$ -WO₃ containing higher vanadium oxide content than monolayer loading and calcined at various temperatures are shown in Figure 8. Unlike $4 \cdot V_2O_5/ZrO_2$ -WO₃ and $12 \cdot V_2O_5/ZrO_2$ -WO₃ catalysts, for $28 \cdot V_2O_5/ZrO_2$ -WO₃ calcined even at lower temperatures (673-773 K) a sharp peak due to crystalline V_2O_5 appeared at 290 ppm together with peaks at 670 and 870 ppm due to the tetrahedral surface species. However, for sample calcined at 873 K, in addition to a peak at 300 ppm due to crystalline V_2O_5 a sharp peak at 800 ppm due to ZrV_2O_7 compound appeared. As shown in Figure 8, the peak intensity of ZrV_2O_7 Jong Rack Sohn et al.

Figure 8. Solid state 51 V NMR spectra of $28-V_2O_5/ZrO_2-WO_3$ calcined at different temperatures.

Figure 9. Infrared spectra of NH₃ adsorbed on $4-V_2O_3/ZrO_2-WO_3$ calcined at 973 K.: (a) background of $4-V_2O_3/ZrO_2-WO_3$ evacuated at 673 K for 1 h, (b) NH₃ (20 torr) adsorbed on (a), (c) b sample evacuated at 298 K for 5 min, and (d) c sample evacuated at 503 K for 0.5 h.

increased with increase in calcination temperature, consuming the content of crystalline V₂O₅. Consequently, at 973 K of calcination temperature only a peak due to the ZrV₂O₇ phase appeared at 800 ppm. At 1073 K of calcination temperature a sharp peak of crystalline V₂O₅ at 290 ppm due to the decomposition of ZrV₂O₇ was again observed. However, unlike 4-V₂O₅/ZrO₂-WO₃ and 12-V₂O₅/ZrO₂-WO₃, for 28-V₂O₅/ZrO₂-WO₃ the ZrV₂O₇ compound was not decomposed completely at 1073 K, leaving some of ZrV₂O₇. It seems likely that it is very difficult for all ZrV₂O₇ to decompose for 1.5 h because large amount of ZrV₂O₇ was formed in the case of 28-V₂O₅/ZrO₂-WO₃.

Acidic Properties. The acid strength of the catalysts was examined by a color change method, using Hammett indicator³⁰ in dried sulfuryl chloride. Since it was very difficult to observe the color of indicators adsorbed on catalysts of high vanadium oxide content, a low percentage of vanadium content (1 wt%) was used in this experiment. ZrO_2 evacuated at 773 K for 1 h has an acid strength $H_0 \leq$ +1.5, while 1-V₂O₅/ZrO₂ was estimated to have a $H_0 \leq$ - 11.35, indicating the formation of new acid sites stronger than those of oxide components. The acid strength of 1- V_2O_3/ZrO_2 -WO₃ was also found to be $H_0 \le -14.5$. Acids stronger than $H_0 \leq -11.93$, which corresponds to the acid strength of 100% H₂SO₄, are superacids.³¹ Consequently, V2O5/ZrO2-WO3 catalysts would be solid superacids. The superacidic property is attributed to the double bond nature of the W=O in the complex formed by the interaction of ZrO₂ with WO3.32 That is, the acid strength of samples modified with WO₃ becomes stronger by the inductive effect of W=O in the complex.

Infrared spectroscopic studies of ammonia adsorbed on solid surfaces have made it possible to distinguish between Brönsted and Lewis acid sites.33.34 Figure 9 shows the IR spectra of ammonia adsorbed on 4-V2O5/ZrO2-WO3 calcined at 973 K and evacuated at 673 K for 1 h. For $4-V_2O_5/ZrO_2$ -WO3 the bands at 1443 are the characteristic peaks of ammonium ion, which are formed on the Brönsted acid sites and the other set of adsorption peaks at 1621-1606 cm⁻¹ is contributed by ammonia coordinately bonded to Lewis acid sites,33,34 indicating the presence of both Brönsted and Lewis acid sites. The band shift of adsorbed ammonia from 1621 cm⁻¹ to 1606 cm⁻¹ after evacuation at 503 K for 0.5 h is due to the removal of ammonia adsorbed on weak acid sites or physically adsorbed ammonia. Other samples having different vanadium content also showed the presence of both Lewis and Brönsted acids. Therefore, these V2O5/ZrO2-WO₃ samples can be used as catalysts for Lewis or Brönsted acid catalysis.

Conclusions

This paper has shown that a combination of FTIR and ⁵¹V solid-state NMR can be used to perform the characterization of V_2O_5 catalysts supported on ZrO₂-WO₃. On the basis of results of FTIR and solid state ⁵¹V NMR, at low calcination temperature of 773 K vanadium oxide up to 12 wt% was well dispersed on the surface of ZrO₂-WO₃. However, high V_2O_5 loading (equal to or above 18 wt%) exceeding the formation of monolayer on the surface of ZrO₂-WO₃ was well crystallized. The ZrV₂O₇ compound

was formed through the reaction of V_2O_5 and ZrO_2 at 873 K and the compound decomposed into V_2O_5 and ZrO_2 at 1073 K, which were observed in the spectra of FTIR and solid state ⁵¹V NMR. Infrared spectroscopic studies of ammonia adsorbed on V_2O_5/ZrO_2 -WO₃ catalysts showed the presence of both Lewis and Br nsted acids.

Acknowledgment. This paper was supported by the Korea Science and Engineering Foundation through the Research Center for Catalytic Technology at Pohang University of Science and Technology.

References

- Nakagawa, Y.; Ono, T.; Miyata, H.; Kubokawa, Y. J. Chem. Soc., Faraday Trans. 1 1983, 79, 2929.
- Miyata, H.; Kohno, M.; Ono, T.; Ohno, T.; Hatayama, F. J. Chem. Soc., Faraday Trans. 1 1989, 85, 3663.
- 3. Mars, P.; Van Krevelen, D. W. Oxidations Carried Out by Means of Vanadium Oxide Catalysts, Spec. Suppl. Chem. Eng. 1954, 3, 41.
- 4. Sachtler, W. M. H. Catal. Rev. 1970, 4, 27.
- 5. Forzatti, P.; Tronoconi, E.; Busca, G.; Titarellp, P. Catal. Today 1987, 1, 209.
- Busca, G.; Elmi, A. S.; Forzatti, P. J. Phys. Chem. 1987, 91, 5263.
- Elmi, A. S.; Tronoconi, E.; Cristiani, C.; Martin, J. P. G.; Forzatti, P. Ind. Eng. Chem. Res. 1989, 84, 237.
- Miyata, H.; Fujii, K.; Ono, T.; Kubokawa Y.; Ohno, T.; Hatayama, F. J. Chem. Soc., Faraday Trans. 1 1987, 83, 675.
- Cavani, F.; Centi, G.; Foresti, E.; Trifiro, F. J. Chem. Soc., Faraday Trans. 1 1988, 84, 237.
- Hayata, F.; Ohno, T.; Maruoka, T.; Miyata, H. J. Chem. Soc., Faraday Trans. 1991, 87, 2629.
- Arco, M. del, Holgado, M. J.; Martin, C.; Rives, V. Langmiur 1990, 6, 801.
- Centi, G.; Pinelli, D.; Trifiro, F.; Ghoussoub, D.; Guelton, M.; Gengembre, L. J. Catal. 1991, 130, 238.
- Inomata, M.; Mori, K.; Miyamoto, A.; Murakami, Y. J. Phys. Chem. 1983, 87, 761.
- Scharf, U.; Schraml Marth, M.; Wokaun, A.; Baiker, A. J. Chem. Soc., Faraday Trans. 1991, 87, 3299.
- Scharf, U.; Schraml-Marth, M.; Wokaun, A.; Baiker, A. J. Chem. Soc., Faraday Trans. 1991, 87, 3299.
- Miyata, H.; Kohno, M.; Ono, T.; Ohno, T.; Hatayama, F. J. Mol. Catal. 1990, 63, 181.
- 17. Sohn, J. R.; Park, M. Y.; Pae, Y. I. Bull. Korean Chem. Soc. 1996, 17, 274.
- Hayashi, S.; Hayamizu, K. Bull. Chem. Soc. Jpn. 1990, 63, 961.
- Mori, K.; Miyamoto, A.; Murakami, Y. J. Chem. Soc., Faraday Trans. 1987, 83, 3303.
- Bjorklund, R. B.; Odenbrand, C. U. I.; Brandin, J. G. M.; Anderson, L. A. H.; Liedberg, B. J. Catal. 1989, 119, 187.
- Sohn, J. R.; Cho, S. G.; Pae, Y. I.; Hayashi, S. J. Catal. 1996, 159, 170.
- Inomata, M.; Miyamoto, A.; Marakami, Y. J. Catal. 1980, 62, 140.
- 23. Highfield, J. G.; Moffat, J. B. J. Catal. 1984, 88, 177.
- 24. Roozeboom, F.; Mittelmelijer-Hazeleger, M. C.; Moulijn, J. A.; Medema, J.; de Beer, U. H. J.; Gelling,

862 Bull. Korean Chem. Soc. 1998, Vol. 19, No. 8

Tae Myung Sung et al.

P. J. J. Phys. Chem. 1980, 84, 2783.

- 25. Eckert, H.; wachs, I. E. J. Phys. Chem. 1989, 93, 6796.
- Reddy, B. M.; Reddy, E. P.; Srinivas, S. T.; Mastikhim, V. M.; Nosov, N. V.; Lapina, O. B. J. Phys. Chem. 1992, 96, 7076
- Le Costumer, L. R.; Taouk, B.; Le Meur, M.; Payen, E, Guelton, M.; Grimblot, J. J. Phys. Chem. 1988, 92, 1230.
- Narsimha, K.; Reddy, B. M.; Rao, P. K.; Mastikhin, V. M. J. Phys. Chem. 1990, 94, 7336.
- 29. Sobalik, Z.; Lapina, O. B.; Novgorodova, O. N.; Mastikhin, V. M. Appl. Catal. 1990, 63, 191.
- Sohn, J. R.; Lee, S. Y. Appl. Catal. A: General 1997, 164, 127.
- Olah, F. G. A.; Prakash, G. K. S.; Sommer, J. Science 1979, 206, 13.
- Bernhole, J.; Horseley, J. A.; Murrell, L. L.; Sherman, L. G.; Soled, S. J. Phys. Chem. 1987, 97, 1526.
- 33. Basila, M. R.; Kantner, T. R. J. Phys. Chem. 1967, 71, 467.
- Satsuma, A.; Hattori, A.; Mizutani, K.; Furuta, A.; Miyamoto, A.; Hattor, T.; Murakami, Y. J. Phys. Chem. 1988, 92, 6052.

Stereocontrolled Preparation of 2,6-Disubstituted 4-Methylenetetrahydropyrans by Lewis Acid Promoted Allylsilane-Acetal Cyclization

Tae Myung Sung, Woo Young Kwak, and Kyung-Tae Kang*

Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, Pusan 609-735, Korea Received April 23, 1998

The Lewis acid mediated intramolecular additions of allylsilanes to acetal substrates are described. Excellent regio- and diastereoselectivity are achieved by boron trifluoride promoted cyclization of allylsilane-acetals 5 and 8 derived from hydroxy allylsilanes 3. Cyclizations occur in moderate to high yields, providing direct routes to *cis*-2,6-disubstituted 4-methylenetetrahydropyrans 6 and 9.

Introduction

Tetrahydropyrans are important structural units in a variety of biologically active natural products.¹ Consequently, there are many efficient methods for the preparation of the six-membered oxacycles.² However, these methods were not useful for the straightforward synthesis of 4-methylenetetrahydropyrans because of difficult control for the regioselective formation of exomethylene moiety. 4-Methylenetetrahydropyran is a key-subunit present in the novel macrolides such as phorphoxazoles A and B,³ and zampanolide⁴ which exhibit exceedingly potent cytostatic activity against various human solid tumor cell lines.

Intramolecular cyclizations of allylsilanes with an electrophile have become exceedingly useful for highly regio- and stereoselective formation of various ring compounds.⁵ Indeed, Marko *et al.* reported that the intramolecular silyl-modified Sakurai (ISMS) reaction allowed the construction of the 4-methylenetetrahydropyrans, however, 2,6-disubstituted derivatives were not found.⁶

In continuation of our studies on exploring synthetic application of bismetallic reagents containing silicon and tin atoms,⁷ we found that 3-stannyl-2-(silylmethyl)propene **1** reacted smoothly with aldehydes in refluxing toluene even without any catalytic activation to give hydroxy allytsilanes **3** in good yields.⁸

In this paper we present our investigation of the regioselective formation of a variety of 2,6-disubstituted 4methylenetetrahydropyrans by Lewis acid promoted cyclization of allylsilanes having an acetal group derived from

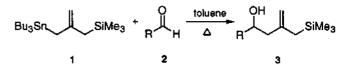


 Table 1. Preparation of allylsilane-acetals 5 and their cyclizations to 4-methylenetetrahydropyrans 6

Entry	Allylsilane-acetal 5		Tetrahydro-
	R (Ratio	Yield (%) ^a of Diastereomers) ^{bc}	pyran 6 Yield (%) ^d
a	Ph	92 (70:30)	59 41 (SnCl ₄) ^e <5 (ZnCl ₂) ¹
ь	p-NO₂C ₆ H₄	91 (85:15) ⁵	80
c	p-EtO ₂ CC ₆ H ₄	95 (75:25)	57
d	<i>trans</i> -PhCH = CH	97 (70:30)	78
e	$\sqrt{2}$	90 (60:40)	17
f	\sqrt{s}	87 (80:20)	20
g	CH3CH2CH2	82 (70:30)	53

^a Isolated yields. ^b The ratio of diastereomers was determined by ¹H NMR analysis. ^c Diastereomers were separated by chromatography (SiO₂, hexane : ether=15:1) unless otherwise noted. The higher Rf diastereomers were major isomers. ^d Reactions were carried out in dichloromethane at -78 °C with 2 equiv of BF₃·OEt₂ unless otherwise noted. ^e SnCl₄, 2 equiv, CH₂Cl₂, -78 °C. ^fZnCl₂, 2 equiv, CH₂Cl₂, -78 °C-20 °C.