• Title/Summary/Keyword: temperature hysteresis

Search Result 498, Processing Time 0.028 seconds

Analysis of Steady Heat Conduction for Rubber Pads of a Tank Track Subjected to Dynamic Loading (동적하중을 받는 궤도차량 고무패드의 정상 열전도 해석)

  • Kim, Hyung-Je;Kim, Byung-Tak
    • Elastomers and Composites
    • /
    • v.36 no.3
    • /
    • pp.153-161
    • /
    • 2001
  • The rubber pads era tank which undergo dynamic deformations with the sufficient amplitudes and frequencies lead to a considerable internal temperature rise due to the heat generation. The heat generation which is dependent on the viscoelastic characteristics or a rubber is due to the conversion of partial mechanical energy into thermal energy identical to the area oi hysteresis loop. Heat generation without adequate heat dissipation leads to heat build-up and the excessive temperature rite exerts a bad influence upon the performance and the life of rubber products. In this paper, temperature distributions of the rubber pads of a tank track subjected to dynamic loads are obtained under the assumption of the steady state. Heat generation rates used in this finite element analysis are acquired through experiments and the computed temperature fields are displayed in isothermal contour regions.

  • PDF

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (I) - Monotonic and Cyclic Behavior - (냉간 가공된 316L 스테인리스강의 저주기 피로 거동에 미치는 온도의 영향 (I) - 인장 및 반복 거동 -)

  • Hong, Seong-Gu;Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.333-342
    • /
    • 2004
  • Tensile and low cycle fatigue (LCF) tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650$^{\circ}C$. At all test temperatures, cold worked material showed the tendency of higher strength and lower ductility compared with those of solution treated material. The embrittlement of material occurred in the temperature region from 300$^{\circ}C$ to 600$^{\circ}C$ due to dynamic strain aging. Following initial cyclic hardening for a few cycles, cycling softening was observed to dominate until failure occurred during LCF deformation, and the cyclic softening behavior strongly depended on temperature and strain amplitude. Non-Masing behavior was observed at all test temperatures and hysteresis energy curve method was employed to describe the stress-strain hysteresis loops at half$.$life. The prediction shows a good agreement with the experimental results.

Effect of Phenyl Vinyl Methyl Silicone (PVMQ) on Low Temperature Sealing Performance of Fluorosilicone Composites

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yun, Yu-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.209-216
    • /
    • 2021
  • In this study, we observed the mechanical properties, thermal stability, and low temperature sealing performance of fluorosilicone elastic composites. When the blend ratio of Phenyl vinyl methyl silicone (PVMQ) was increased, the tensile strength, modulus at 100%, and compression set were decreased. The thermal stability of fluorosilicone elastic composites showed a similar tendency. These were caused by poorer green strength of PVMQ than Fluorosilicone rubber (FVMQ). The change in the tensile strength and elongation at -40℃ showed a decreasing tendency with increasing PVMQ blend ratio. By increasing the PVMQ blend ratio, low-temperature performance was improved. The Dynamic mechanical analysis (DMA) results showed that Tg was decreased and low-temperature performance was improved with increasing PVMQ blend ratio. However tanδ was decreased becaused of the poor green strength and elasticity of PVMQ. From a hysteresis loss at -40℃, the hysteresis loss value was increased and fluorosilicone elastic composites showed the decreasing tendency of elasticity with increasing PVMQ blend ratio. From the TR test, TR10 was decreased with increasing PVMQ blend ratio. FS-4 (45% PVMQ blended composites) showed a TR10 of -68.0℃ that was 5℃ lower than that of FS-1 (100% FVMQ). The gas leakage temperature was decreased with increasing PVMQ blend ratio. The gas leakage temperature of FS-4 was -69.2℃ that was 5℃ lower than that of FS-1. Caused by the polymer chain started to transfer from a glassy state to a rubbery state and had a mobility of chain under Tg, the gas leakage temperature showed a lower value than Tg. The sealing performance at low temperature was dominated by Tg that directly affected the mobility of the polymer chain.

Power Loss and Electro-Magnetic Characteristics of Ni-Cu-Zn Ferrites (Ni-Cu-Zn페라이트의 損失과 磁性 特性)

  • Otsuki, E.;Kim, Jeong-Su
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.37-42
    • /
    • 2004
  • The power loss analysis was carried out for Ni-Cu-Zn ferrite sample with different content of NiO and ZnO. The power loss, Pcv decreases monotonically with increasing temperature and attains to a certain value at around 100~120 degrees Celsius. The frequency dependence of Pcv can be explained by Pcv~f$^n$, and n is independent of the frequency, f up to 1 MHz. The Pcv decreases with an increase in ZnO/NiO. The Pcv was separated to hysteresis loss(Ph) and residual loss(Pcv-Ph). The temperature characteristics and compositional dependence of Pcv can be attributed to the Ph, while Pcv-Ph is not affected by both temperature and ZnO/NiO. By analyzing temperature and composition dependence of Ph and initial permeability, ${\mu}_i$ like following equations could be formularized. ${\mu}_i{\mu}_0=I_s^2/(K_I+b{\sigma}_0{\lambda}_s)$ Wh=13.5(I$_s^2/{\mu}_i{\mu}_0)$ Where ${\mu}_0$ is permeability of vacuum, I$_s$ is saturation magnetization, K$_I$ is anisotropy constant, $s_0$ is internal heterogeneous stress, ${\lambda}_s$ is magnetostriction constant, b is unknown constant, and Wh is hysteresis loss per one cycle of excitation (Ph=Wh${\times}$f). Steinmetz constant of Ni-Cu-Zn ferrite, m=1.64~2.2 is smaller than that of Mn-Zn ferrites, which suggests the difference of loss mechanisms between these materials.

Power Loss and Electro-Magnetic Characteristics of Ni-Cu-Zn Ferrites (Ni-Cu-Zn페라이트의 손실과 자성 특성)

  • Otsuki E.;Kim Jeong-Su
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2004.12a
    • /
    • pp.3-11
    • /
    • 2004
  • The power loss analysis was carried out for Ni-Cu-Zn ferrite samples with different content of NiO and ZnO. The power loss, Pcv decreases monotonically wi increasing temperature and attains to a certain value at around $100\~120$ degrees Celsius. The frequency dependence of Pcv can be explained by $Pcv\~f^n$', and n is independent of the frequency, f up to 1MHz. The Pcv decreases with an increase in ZnO/NiO. The Pcv was separated to hysteresis loss, Ph and residual loss, (Pcv-Ph). The temperature characteristics and compositional dependence of Pcv can be attributed to the Ph, while (Pcv-Ph) is not affected by both temperature and ZnO/NiO. By analyzing temperature and composition dependence of Ph and initial permeability, ${\mu}^i$ following equations could be formularized. $${\mu}_i{\mu}o=I_x\;^2/(K_1+bs_ol_s)\;\;\;\;(1)$$ $Wh=13.5(I_s\;^2/{\mu}_i{\mu}_o)\;\;\;\;(2)$$ Were ${\mu}_o$ is permeability of vacuum, $I_s$ saturation magnetization, $K_1$ anisotropy constant, $S_o$ internal heterogeneous stress, $I_s$, magnetostriction constant, b unknown constant. Wh hysteresis loss per one cycle of excitation (Ph: Wh*f). Steinmetz constant of Ni-Cu-Zn ferrites, $m=1.64\~2.2$ is smaller than the one of Mn-Zn ferrites, which suggests the difference of loss mechanism between these materials.

  • PDF

Structural and ferroelectric characteristics of sol-gel $Pb(Zr_{1-x}Ti_x)O_3$ thin films according to the sintering conditions and Zr/Ti mol% (소성 조건과 Zr/Ti 몰비에 따른 졸겔 $Pb(Zr_{1-x}Ti_x)O_3$ 박막의 구조 및 강유전 특성)

  • 김준한;윤현상;박정흠;장낙원;박창엽
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.836-850
    • /
    • 1996
  • In this study, we have analyzed structural analysis and measured ferroelectric characteristics of PZT thin films prepared by sol gel process with different sintering conditions and different Zr/Ti mot%. When the Zr mot% of PZT thin film was increased, it was found that the remanent. polarization and coercive field were decreased and increased, respectively. Also, the maxium dielectric constant of PZT(50/50) thin film was 786.8. We got double hysteresis(anti-fcrroelectric) curve from PbZrO$_{3}$ thin film. As heating rate goes up, pyrochlore phase of PZT thin film was decreased and dielectric and ferroelectric characteristics were improved. As a result of variation of sintering temperature and time 500.deg. C-800.deg. C and 5 sec.-8 hours, respectively, we got optimal sintering temperature and time. The optimium sintering temperature and time of conventional furnace method and rapid thermal processing method were 650.deg. C-700.deg. C for 30-60 minutes and 700.deg. C/20 seconds-2 minutes, respectively.

  • PDF

Electrocaloric Effect of [Bi0.5(Na0.84K0.16)0.5]TiO3 Lead-free Ceramics ([Bi0.5(Na0.84K0.16)0.5]TiO3 무연 세라믹스의 전기열량 효과)

  • Han, Jong-Dae;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.234-237
    • /
    • 2015
  • In this work, in order to develop the ceramics with an excellent electrocaloric effect, $[Bi_{0.5}(Na_{0.84}K_{0.16})_{0.5}]TiO_3$ ceramics were fabricated by conventional solid state reaction method. The ceramics was observed as rhombohedral phase by X-ray diffraction patterns. To investigate the electrocaloric effect of the ceramics, P-E hysteresis loops were measured at various temperature. The temperature change ${\Delta}T$ of these ceramics was calculated using the Maxwell's relations. The maximum value of temperature change ${\Delta}T$ was obtained as 0.3 $1^{\circ}C$ at $165^{\circ}C$ under applied electric fields 45 kV/cm.

Variation of Asymmetric Hysteresis Loops with Annealing Temperature and Time (열처리 온도와 시간에 따른 비대칭 자기 이력 곡선의 변화)

  • 신경호;민성혜;이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.251-260
    • /
    • 1995
  • It has been reported that Co-based amorphous ferromagnetic alloys annealed in a small magnetic field develop a reproducible, asymmetric hysteresis loop. If the direction of the field during annealing is regarded as +, the magnetization reversal from - to + is smooth and reversible, with its slope determined by the demagnetizing field of the sample. This phenomenon is called the asymmetric magnetization reversal (AMR). The shape of the hyster-esis loop depends sensitively on the condition during the anneal and the alloy composition. Here, we report on the effect of the annealing temperature and time on AMR in a zero magnetostrictive ferromagnetic amorphous alloy. The AMR effect develops in a very short time at a reasonably high temperature, but is stabilized by annealing for a prolonged time.

  • PDF

The Structural and electrical Properties of $BaTiO_3$ Thin Films Deposited on Si/MgO Substrates (Si/MgO 기판에 증착된 BaTiO$_3$ 박막의 구조 및 전기적 특성)

  • 홍경진;김태성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1108-1114
    • /
    • 1998
  • $BaTiO_3$ thin films preferred c-axis orientation for the potential application of ferroelectric memory devices were deposited on silicon substrates(100) by RF sputtering and annealed at 800 and 900[$^{\circ}C$] in air. The BT(100)/BT(110) peak ratio of the sputtered sample was decreased with post-annealing in air. According to increasing with annealing temperature and time, the peak ratio of BT(100)/BT(110) was decreased and the surface density of thin film was high. Dielectric characteristics of $BaTiO_3$ thin film was measured as a function of annealing temperature and frequency. The dielectric constants were increased with annealing and decreased with frequency by space charge polarization and dipole polarization below 600[kHz]. The remanent polarization and coercive field in P-E hysteresis loop of $BaTiO_3$thin film were increased with the annealing temperature in air. The remanent polarization and coercive filed annealed at 800[$^{\circ}C$] for 1hr were 1.2[$\mu$C/$cm^2$] and 200[kV/cm]

  • PDF