• Title/Summary/Keyword: temperature hysteresis

Search Result 499, Processing Time 0.027 seconds

Electrical properties of sol-gel derived $ PbZrO_3$-$PbTiO_3$-$Pb(Ni_{1/3}Nb_{2/3})O_3$ thin film (Sol-Gel 법에 의한$ PbZrO_3$-$PbTiO_3$-$Pb(Ni_{1/3}Nb_{2/3})O_3$)

  • 임무열;구경완;한상옥
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.134-140
    • /
    • 1997
  • PbTiO$_{3}$-PbZrO$_{3}$-Pb(Ni$_{1}$3/Nb $_{2}$3/O$_{3}$)(PZT-PNN) thin films were prepared from corresponding metal organics partially stabilized with diethanolamine by the sol-gel spin coating method. Each mol rates of PT:PZ:PNN solutions were #1(50:40:10), #2(50:30:20), #3(45:35:20) and #4(40:40:20), respectively. The spin-coated PZT-PNN films were sintered at the temperature from 500.deg. C to 600.deg. C for crystallization. The P-E hysteresis curve was drawn by Sawyer-Tower circuit with PZT-PNN film. The coercive field and the remanent polarization of #4(40:40:20 mol%) PZT-PNN film were 28.8 kV/cm and 18.3 .mu.C/cm$^{2}$, respectively. Their dielectric constants were shown between 128 and 1120, and became maximum value in MPB(40:40:20 mol%). The leakage currents of PZT-PNN films were about 9.4x 10$^{-8}$ A/cm$^{2}$, and the breakdown voltages were about 0.14 and 1.1 MV/cm. The Curie point of #3(45:35:20 mol%, sintered at 600.deg. C) film was 330.deg. C.

  • PDF

Humidity Sensitive Properties of Humidity Sensor Using Reactive Copolymers (반응성 공중합체들을 이용한 습도센서의 감습 특성)

  • Kim, Jin-Seok;Bae, Jang-Sun;Gong, Myeong-Seon
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.126-131
    • /
    • 2001
  • The mutually reactive copolymers poly[(vinylbenzyl chloride)-co-(n-butyl acrylate)-co-(2-hydroxyethyl methacrylate)] and poly[(4-vinylpyridine)-co-(n-butyl acrylate)-co-(2-hydroxyethyl methacrylate)] were synthesized for the humidity sensitive material by forming simultaneous quaternization. The humidity sensor showed an average resistance of 8.6 M$\Omega$, 310 k$\Omega$ and 12 k$\Omega$ at 30%RH, 60%RH and 90%RH, respectively. The hysteresis and temperature coefficient were $\pm$3%RH and -0.37~-0.40%RH/$^{\circ}C$. The introduction of n-BA and HEMA increased the resistance of the humidity sensor however it enhanced the adherence to the alumina substrate. The response time was 54 seconds changing from 33%RH to 85%RH and the difference of resistance was +0.2%RH after soaking in water for 2 hr.

  • PDF

Piezoelectric and Strain Properties of Lead-free (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 Ceramics (비납계 (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 세라믹의 압전 및 변위 특성)

  • Ryu, Jung-Ho;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.628-633
    • /
    • 2011
  • Studies on lead-free piezoelectrics have been attractive as means of meeting environmental requirements. We synthesized lead-free piezoelectric $(Bi_{1/2}Na_{1/2})TiO_3-Ba(Cu_{1/3}Nb_{2/3})O_3$ (BNT-BCN) ceramics, and their dielectric, piezoelectric, and strain behavior were characterized. As BCN with a tetragonal phase was incorporated into the rhombohedral BNT lattice, the lattice constant increased. A small amount of BCN increased the density and dielectric constant forming the complete solid solution with BNT. However, BCN above 10 mol% was precipitated into a separate phase, and which was detected with XRD. In addition, EDX measurement revealed that Cu in BCN was not distributed homogeneously but was accumulated in a certain area. A lower density with a large amount of BCN was attributed to the nonsinterable property of BCN with large tetragonaliy. The dielectric constant vs the temperature change and the strain vs the electric field indicated that the ferroelectric property of BNT was diminished and paraelectric behavior was enhanced with the BCN addition. BNT-7.5BCN showed a 0.11% unimorph strain with a 9.0 kV/mm electric field with little hysteresis.

MICROMAGNETISM OF HARD AND SOFT MAGNETIC MATERIALS

  • Kronmuller, Helmut
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.366-371
    • /
    • 1995
  • High performance magnetic materials are characterized by the combination of outstanding magnetic properties and optimized microstructures, e.g., nanocrystalline composites of multilayers and small particle systems. The characteristic parameters of the hysteresis loops of these materials vary over more than a factor of $10^{6}$ with optimum values for the coercive field of several Tesla and permeabilities of $10^{6}$. Within the framework of the computational micromagnetism (nanomagnetism) using the finite element method the upper and lower bounds of the coercive field of different types of grain ensembles and multilayers have been determined. For the case of nanocrystalline composites the role of grain size, exchange and dipolar coupling between grains and the degree of grain alignment will be discusses in detail. It is shown that the largest coercivities are obtained for exchange decoupled grains, whereas remanence enhancing requires exchange coupled grains below 20 nm. For composite permanent magnets based on $Nd_{2}Fe_{14}B$ with an amount of ~ 50% soft $\alpha$-Fe-phase coercivities of ${\mu}_{0}H_{c}=0.75\;T$, a remanence of 1.5 T and an energy product of $400\;kJ/m^{3}$ is expected. In nanocrystalline systems the temperature dependence of the coercivity is well described by the relation ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}{\mu}_{0}M_{s}$, where the microstructural parameters $\alpha$ and $N_{eff}$ take care of the short-range perturbations of the anisotropy and $N_{eff}$ is related to the long-range dipolar interactions. $N_{eff}$ is found to follow a logarithmic grain size size dependence ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}(\beta1nD){\mu}_{0}M_{s}$. Several trends how to achieve the ideal situation $\alpha$->1 and $N_{eff}$->1->0 will be discussed.

  • PDF

Effects of reversing the coiling direction on the force-deflection characteristics of nickel-titanium closed-coil springs

  • Park, Hwan-Hyung;Jung, Suk-Hwan;Yoon, Juil;Jee, Kwang Koo;Han, Jun Hyun;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.49 no.4
    • /
    • pp.214-221
    • /
    • 2019
  • Objective: To investigate the effects of reversing the coiling direction of nickel-titanium closed-coil springs (NiTi-CCSs) on the force-deflection characteristics. Methods: The samples consisted of two commercially available conventional NiTi-CCS groups and two reverse-wound NiTi-CCS groups (Ormco-Conventional vs. Ormco-Reverse; GAC-Conventional vs. GAC-Reverse; n = 20 per group). The reverse-wound NiTi-CCSs were directly made from the corresponding conventional NiTi-CCSs by reversing the coiling direction. Tensile tests were performed for each group in a temperature-controlled acrylic chamber ($37{\pm}1^{\circ}C$). After measuring the force level, the range of the deactivation force plateau (DFP) and the amount of mechanical hysteresis (MH), statistical analyses were performed. Results: The Ormco-Reverse group exhibited a significant shift of the DFP end point toward the origin point (2.3 to 0.6 mm), an increase in the force level (1.2 to 1.3 N) and amount of MH (1.0 to 1.5 N) compared to the Ormco-Conventional group (all p < 0.001), which indicated that force could be constantly maintained until the end of the deactivation curve. In contrast, the GAC-Reverse group exhibited a significant shift of the DFP-end point away from the origin point (0.2 to 3.3 mm), a decrease in the force level (1.1 to 0.9 N) and amount of MH (0.6 to 0.4 N) compared to the GAC-Conventional group (all p < 0.001), which may hinder the maintenance of force until the end of the deactivation curve. Conclusions: The two commercially available NiTi-CCS groups exhibited different patterns of change in the force-deflection characteristics when the coiling direction was reversed.

The Growth of Magnetic DyBiIG by sol-gel Method (Sol-gel법에의한 BiDy-철 석류석의 합성)

  • Park, C.M.;Lee, S.H.;Kim, Seung-Hoon;Jang, Hee-Dong
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.1
    • /
    • pp.36-40
    • /
    • 2003
  • We have grown D $y_{x}$B $i_{3-x}$F $e_{5}$ $O_{12}$ (x = 0.5,1.0, 1.5,2.0) magnetic garnet thin films upon $Al_2$O3i and GGG substrate using Pechini process. The annealing temperature to get single phase D $y_{x}$B $i_{3-x}$F $e_{5}$ $O_{12}$ garnet is dependent on substrate, i.e. the annealing temperature for GGG substrate il 5$0^{\circ}C$ lower than that for $Al_2$ $O_3$ substrate. The grains of garnet thin film grown on GGG (111) plane align along [111] direction, and in this case the hysteresis curve does not saturate up to H : 5000 Oe. We attribute this phenomenon to rotation magnetization process. The maximum amount of Bi substitution in polycrystalline D $y_{x}$B $i_{3-x}$F $e_{5}$ $O_{12}$ thin film prepared by Pechini process is restricted to 2.0 Bi atom/unit cell, and this value is less than that in single garnet crystall grown by LPE method.own by LPE method.ethod.

The Crystallographic and Magnetic Properties of $Fe_{1-x}Co_x$System ($Fe_{1-x}Co_x$계의 결정구조와 자기적인 성질)

  • 김정기;한경훈;서정철
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.190-195
    • /
    • 1999
  • The crystallographic and magnetic properties of the system of $Fe_{1-x}Co_x$(x=0.2 and 0.4) prepared by microwave arc-melting with the maximum power of 3.5 kW and a iron-foil with thickness of 25 ${\mu}{\textrm}{m}$ have been studied by the methods of X-ray diffraction and the measurement of the magnetic hysteresis using the vibrating sample magnetometer at room temperature. The samples were prepared in three different ways: First, pellet form pressed under the pressure of 9,000 N/$\textrm{cm}^2$. Second, the sheet cold rolled. Third, thin sheet treated with the temperature of 90$0^{\circ}C$. The X-ray diffraction pattern of the sample prepared by the first method shows that the crystal structure of the sample is bcc as same as that of Fe with a good uniformity. The iron-foil has the coercivity of 43 Oe and the initial slope of magnetization of 0.328 emu/gOe. The coervicity and magnetization of the sample prepared by the second method increased as the Co content increased. But the initial slop of the magnetization decreased as the Co content increased. This means that the displacement of domain wall is suppressed by the increases of coercivity as the Co content increased. The saturation magnetization of the samples made by the third method increased. On the other hand, the coercivity of these samples decreased. The increase of saturation magnetization of the samples seems to be related to the changes in X-ray intensity after heat treatment. Also some magnetic parameters of the samples were calculated by using a simple model and compared with other values.

  • PDF

Fabrication of Bismuth- and Aluminum-Substituted Dysprosium Iron Garnet Films for Magneto-Optic Recording by Pyrolysis and Their Magnetic and Magneto-Optic Properties

  • Cho, Jae-Kyong
    • The Korean Journal of Ceramics
    • /
    • v.1 no.2
    • /
    • pp.91-95
    • /
    • 1995
  • Polycrystalline bismuth- and aluminum- substituted dysporsium and yttrium iron garnet (Bi2R3-xAlyFe5-yO12, R=Dy or Y, $0\leqx\leq3, \; 0\leqy\leq3$) films have been prepared by pyrolysis. The crystallization temperatures, the solubility limit of bismuth ions into the garnet phase, and magnetic and magneto-optic properties of the films have been investigated as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained unchanged at x>1.5, whereas, showed no changes as aluminum concentration (y) increased up to y=1.0 and then gradually increased at y>1.0. The solubility limit of bismuth ions was x=1.8 when y=0 but increased to x=2.3 when y=1.0. It was demonstrated that the magnetic and magneto-optic properties of the dysprosium iron garnet films could be tailored by bismuth and aluminum substitution suitable for magneto-optic recording as follows. The saturation magnetization and coercivity data obtained for the films indicated that the film composition at which the magnetic compensation temperature became room temperature was y=1.2 when x=1.0. Near this composition the coercivity and the squareness of the magnetic hysteresis loop of the films were several kOe and unit, respectively. The Curie temperatures of the films increased with the increase of x but decreaed with the increase of y, and was 150-$250^{\circ}C$ when x=1.0 and y=0.6-1.4. The Faraday rotation at 633 nm of the films increased as x increased but decreased as y increased, and was 1 deg/$\mu\textrm{m}$ when x=1.0 and y=1.0. Based on the data obtained, the appropriate film composition for magneto-optic recording was estimated as near x=1.0 and y=1.0 or $BiDy_2AlFe_4O_{12}$.

  • PDF

An Experimental Study of Synthesis and Characterization of Vanadium Oxide Thin Films Coated on Metallic Bipolar Plates for Cold-Start Enhancement of Fuel Cell Vehicles (연료전지 차량의 냉시동성 개선을 위한 금속 분리판 표면의 바나듐 산화물 박막 제조 및 특성 분석에 관한 연구)

  • Jung, Hye-Mi;Noh, Jung-Hun;Im, Se-Joon;Lee, Jong-Hyun;Ahn, Byung-Ki;Um, Suk-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.585-592
    • /
    • 2011
  • The enhancement of the cold-start capability of polymer electrolyte fuel cells is of great importance in terms of the durability and reliability of fuel-cell vehicles. In this study, vanadium oxide films deposited onto the flat surface of metallic bipolar plates were synthesized to investigate the feasibility of their use as an efficient self-heating source to expedite the temperature rise during startup at subzero temperatures. Samples were prepared through the dip-coating technique using the hydrolytic sol-gel route, and the chemical compositions and microstructures of the films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. In addition, the electrical resistance hysteresis loop of the films was measured over a temperature range from -20 to $80^{\circ}C$ using a four-terminal technique. Experimentally, it was found that the thermal energy (Joule heating) resulting from self-heating of the films was sufficient to provide the substantial amount of energy required for thawing at subzero temperatures.

Degradation Evaluation of Mechanical Properties for 12Cr Ferrite Heat Resisting Steel by Reversible Permeability (가역투자율에 의한 12Cr 페라이트 내열강의 역학적 물성의 열화평가)

  • Ryu, Kwon-Sang;Kim, Min-Gi;Nahm, Seung-Hoon;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.464-470
    • /
    • 2010
  • The integrity of the industrial equipment in use under high temperature and high pressure must be assessed by regularly measuring the degraded mechanical properties during service time. In order to nondestructively monitor the degraded mechanical properties of industrial equipment, a measuring method of the reversible permeability(RP) using surface type probe is presented. The method for measuring the RP is based on that RP is the differential value of hysteresis loop. The RP is exactly the foundation hatmonics induced in a detecting coil measured by lock-in amplifier tuned to a frequency of the alternating perturbing magnetic field. The peak of RP is measured around the coercive force. Steel material used in this work was 12Cr ferritic heat resisting steel. The eleven kinds of samples aged during different times under same temperature ($700^{\circ}C$) were prepared. Peak interval of reversible permeability(PIRP), Vickers hardness, and tensile strength measured for the aged samples decreased abruptly for short aging time (below 500 h), but the change became small at a long aging time. Vickers hardness and tensile strength linearly decreased as RIRP decreased, so the degraded mechanical properties of 12Cr ferritic heat resisting steel could be nondestructively evaluated by measuring RIRP.