DOI QR코드

DOI QR Code

Piezoelectric and Strain Properties of Lead-free (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 Ceramics

비납계 (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 세라믹의 압전 및 변위 특성

  • Ryu, Jung-Ho (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Jeong, Dae-Yong (School of Materials Engineering, Inha University)
  • 류정호 (재료연구소 기능세라믹 그룹) ;
  • 정대용 (인하대학교 신소재공학부)
  • Received : 2011.10.15
  • Accepted : 2011.11.09
  • Published : 2011.11.27

Abstract

Studies on lead-free piezoelectrics have been attractive as means of meeting environmental requirements. We synthesized lead-free piezoelectric $(Bi_{1/2}Na_{1/2})TiO_3-Ba(Cu_{1/3}Nb_{2/3})O_3$ (BNT-BCN) ceramics, and their dielectric, piezoelectric, and strain behavior were characterized. As BCN with a tetragonal phase was incorporated into the rhombohedral BNT lattice, the lattice constant increased. A small amount of BCN increased the density and dielectric constant forming the complete solid solution with BNT. However, BCN above 10 mol% was precipitated into a separate phase, and which was detected with XRD. In addition, EDX measurement revealed that Cu in BCN was not distributed homogeneously but was accumulated in a certain area. A lower density with a large amount of BCN was attributed to the nonsinterable property of BCN with large tetragonaliy. The dielectric constant vs the temperature change and the strain vs the electric field indicated that the ferroelectric property of BNT was diminished and paraelectric behavior was enhanced with the BCN addition. BNT-7.5BCN showed a 0.11% unimorph strain with a 9.0 kV/mm electric field with little hysteresis.

Keywords

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  2. E. -G. Lee and J. Lee, Kor. J. Mater. Res., 21(7), 391 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.7.391
  3. J. Ryu, J. J. Choi, B. D. Hahn, D. S. Park, W. H. Yoon and K. H. Kim, Appl. Phys. Lett., 90, 152901 (2007). https://doi.org/10.1063/1.2720751
  4. M. Demartin Maeder, D. Damjanovic and N. Setter, J. Electroceramics, 13, 385 (2004). https://doi.org/10.1007/s10832-004-5130-y
  5. K. Uchino and J. Giniewicz, Micromechatronics, p. 106-110, Marcel Dekker Inc., New York, USA (2003).
  6. H. C. Song, K. H. Cho, H. Y. Park, C. W. Ahn, S. Nahm, K. Uchino, S. H. Park and H. G. Lee, J. Am. Ceram. Soc., 90(6), 1812 (2007). https://doi.org/10.1111/j.1551-2916.2007.01698.x
  7. Y. Chang, Z. Yang, L. Wei and B. Liu, Mater. Sci. Eng., 437, 301 (2006). https://doi.org/10.1016/j.msea.2006.08.046
  8. H. Muthurajan, H. H. Kumar, V. Samuel, U. N. Gupta and V. Ravi, Ceram. Int., 34, 671 (2008). https://doi.org/10.1016/j.ceramint.2006.12.014
  9. Y. Guo, K. Kamimoto and H. Ohsato, Appl. Phys. Lett., 85, 4121 (2004). https://doi.org/10.1063/1.1813636
  10. E. Hollenstein, M. Davis, D. Damjanociv and N. Setter, Appl. Phys. Lett., 87, 182905 (2005). https://doi.org/10.1063/1.2123387
  11. D. Y. Jeong, S. H. Lee, H. C. Song, K. H. Choi, and J. H. Cho, J. Kor. Phys. Soc., 58(3), 663 (2011). https://doi.org/10.3938/jkps.58.663
  12. M. Kobune, K. Teraoka, H. Nishioka, H. Yamaguchi and K. Honda, Jpn. J. Appl. Phys., 59, 09ND08 (2011).
  13. S. E. Park, S. J. Chung, I. T. Kim and K. S. Hong, J. Am. Ceram. Soc., 77, 2641 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb04655.x
  14. S. Priya, A. Ando and Y. Sakabe, J. Appl. Phys., 94, 1171 (2003). https://doi.org/10.1063/1.1585121
  15. D. Maurya, C. W. Ahn, S. Zhang and S. Priya, J. Am. Ceram. Soc., 93(5), 1225 (2010).