• Title/Summary/Keyword: temperature estimation

Search Result 1,651, Processing Time 0.036 seconds

Electron field emission from various CVD diamond films

  • Usikubo, Koji;Sakamoto, Yukihiro;Takaya, Matsufumi
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.385-388
    • /
    • 1999
  • Electron field emission properties from various CVD diamond films were studied. Diamond films were synthesized by microwave plasma CVD at 1173K and at 673K substrates temperature and pulse microwave plasma CVD at 1173K. B-doped diamond film was synthesized by microwave plasma CVD at 1173K also. Estimation by SEM, both the non-doped diamond film and B-doped diamond film which were synthesized at 1173K substrate temperature were $2~3\mu\textrm{m}$ in diameter and nucleation densities were $10^{8}{\;}numbers/\textrm{cm}^2$ order. The diamond film synthesized at 673K was $0.2\mu\textrm{m}$ in diameter and nucleation densities was 109 numbers/cm2 order. The diamond film synthesized by pulse microwave plasma CVD at 1173K was $0.2\mu\textrm{m}$ in diameter and nucleation density was $10^{9}{\;}numbers/\textrm{cm}^2$ order either. From the result of electron field emission measurement, electron field emission at $20V/\mu\textrm{m}$ from CVD diamond film synthesized by pulse microwave plasma CVD was $37.3\mu\textrm{A}/\textrm{cm}^2$ and the diamond film showed the best field emission property comparison with other CVD diamond.

  • PDF

Effective Thermal Conductivity and Diffusivity of Containment Wall for Nuclear Power Plant OPR1000

  • Noh, Hyung Gyun;Lee, Jong Hwi;Kang, Hie Chan;Park, Hyun Sun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.459-465
    • /
    • 2017
  • The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP) accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM) results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

Tritium radioactivity estimation in cement mortar by heat-extraction and liquid scintillation counting

  • Kang, Ki Joon;Bae, Jun Woo;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3798-3807
    • /
    • 2021
  • Tritium extraction from radioactively contaminated cement mortar samples was performed using heating and liquid scintillation counting methods. Tritiated water molecules (HTO) can be present in contaminated water along with water molecules (H2O). Water is one of the primary constituents of cement mortar dough. Therefore, if tritium is present in cement mortar, the buildings and structures using this cement mortar would be contaminated by tritium. The radioactivity level of the materials in the environment exposed to tritium contamination should be determined for their disposal in accordance with the criteria of low-level radioactive waste disposal facility. For our experiments, the cement mortar samples were heated at different temperature conditions using a high-temperature combustion furnace, and the extracted tritium was collected into a 0.1 M nitric acid solution, which was then mixed with a liquid scintillator to be analyzed in a liquid scintillation counter (LSC). The tritium extraction rate from the cement mortar sample was calculated to be 90.91% and 98.54% corresponding to 9 h of heating at temperatures of 200 ℃ and 400 ℃, respectively. The tritium extraction rate was close to 100% at 400 ℃, although the bulk of cement mortar sample was contaminated by tritium.

Comparison Analysis of Machine Learning for Concrete Crack Depths Prediction Using Thermal Image and Environmental Parameters (열화상 이미지와 환경변수를 이용한 콘크리트 균열 깊이 예측 머신 러닝 분석)

  • Kim, Jihyung;Jang, Arum;Park, Min Jae;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.99-110
    • /
    • 2021
  • This study presents the estimation of crack depth by analyzing temperatures extracted from thermal images and environmental parameters such as air temperature, air humidity, illumination. The statistics of all acquired features and the correlation coefficient among thermal images and environmental parameters are presented. The concrete crack depths were predicted by four different machine learning models: Multi-Layer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB), and AdaBoost (AB). The machine learning algorithms are validated by the coefficient of determination, accuracy, and Mean Absolute Percentage Error (MAPE). The AB model had a great performance among the four models due to the non-linearity of features and weak learner aggregation with weights on misclassified data. The maximum depth 11 of the base estimator in the AB model is efficient with high performance with 97.6% of accuracy and 0.07% of MAPE. Feature importances, permutation importance, and partial dependence are analyzed in the AB model. The results show that the marginal effect of air humidity, crack depth, and crack temperature in order is higher than that of the others.

Water quality big data analysis of the river basin with artificial intelligence ADV monitoring

  • Chen, ZY;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.219-225
    • /
    • 2022
  • 5th Assessment Report of the Intergovernmental Panel on Climate Change Weather (AR5) predicts that recent severe hydrological events will affect the quality of water and increase water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed, and solar radiation) were compiled into a representative concentration curve (RC), defined using 8.5. AR5 and future use are calculated based on land use. Semi-distributed emission model Calculate emissions for each target period. Meteorological factors affecting water quality (precipitation, temperature, and flow) were input into a multiple linear regression (MLR) model and an artificial neural network (ANN) to analyze the data. Extensive experimental studies of flow properties have been carried out. In addition, an Acoustic Doppler Velocity (ADV) device was used to monitor the flow of a large open channel connection in a wastewater treatment plant in Ho Chi Minh City. Observations were made along different streams at different locations and at different depths. Analysis of measurement data shows average speed profile, aspect ratio, vertical position Measure, and ratio the vertical to bottom distance for maximum speed and water depth. This result indicates that the transport effect of the compound was considered when preparing the hazard analysis.

Estimation and Spatial Distribution of Monthly FDSI Using AMSR2 Satellite Image-based Soil Moisture in South Korea (AMSR2 위성영상 기반 토양수분을 이용한 우리나라 월별 FDSI 산정 및 공간 분포 특성 분석)

  • Chun, Beomseok;Lee, Taehwa;Jeong, Kwangjune;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.31-43
    • /
    • 2022
  • In this study, we estimated the monthly FDSI (Flash Drought Stress Index) for assessing flash drought on South Korea using AMSR2(Advanced Microwave Scanning Radiometer 2) satellite-based soil moisture footprints. We collected the AMSR2 soil moisture and climate-land surface data from April to November 2018 for analyzing the monthly FDSI values. We confirmed that the FDSI values were high at the regions with the high temperature/evapotranspiration while the precipitation is relatively low. Especially, the regions which satisfied an onset of flash drought (FDSI≧0.71) were increased from June. Then, the most of regions suffered by flash drought during the periods (July to August) with the high temperature and evapotranspiration. Additionally, the impacts of landuse and slope degree were evaluated on the monthly FDSI changes. The forest regions that have the steep slope degree showed the relatively higher FDSI values than the others. Thus, our results indicated that the the slope degree has the relatively higher impact on the onset and increasing of flash drought compared to the others.

Nonstationary Surrogate Model for Reference Evapotranspiration Estimation Based on In-situ Temperature Data (온도인자를 활용한 비정상성 기준증발산량 대체모형 개발)

  • Kim, Ho-Jun;Nguyen, Thi Huong;Kang, Dongwon;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.96-96
    • /
    • 2021
  • 수문기상인자 중 하나인 증발산량은 수자원 계획 및 관리 시 고려되며, 특히 물수지 모형 등의 입력자료로 활용된다. 우리나라를 포함한 각국 기상청 및 국제기구에서는 직접 관측이 아닌 FAO56 Penman-Monteith(PM)을 통해 증발산량을 산출하고 있다. FAO56 PM 방법은 복사(radiation), 대기온도(air temperature), 습도(humidity), 풍속(wind speed) 등의 기상인자로부터 기준증발산량(reference evapotransipiration)을 추정하며, 상대적으로 높은 정확성을 보여준다. 그러나 FAO56 PM 방법은 많은 기상인자를 요구하므로 미계측 유역을 포함한 일부지역에 대한 증발산량 자료 구축이 어려운 실정이다. 또한, 기준증발산량의 특성이 시간에 따라 변화하므로 비정상성(nonstationary)을 고려한 분석이 요구된다. 본 연구에서는 온도인자 기반의 대체모형(surrogate model)을 개발하여 기준증발산량의 비정상성을 고려하고자 한다. 한강유역에 위치한 관측소를 대상으로 모형을 개발하였으며, 시간에 따라 변동하는 기준증발산량의 특성을 고려하기 위해 Bayesian 추론기법을 통해 매개변수를 시간에 따라 추정하였다. 또한, 본 연구에서는 대체모형으로 산정된 증발산량을 활용해 가뭄지수인 EDDI(evaporative demand drought index)를 제시하였다. 가뭄 모니터링 및 조기 경보 안내를 위해 개발된 EDDI를 활용하여 기존 가뭄보다 빠르게 진행되는 초단기 가뭄(flash drought)를 평가하였다. 본 연구에서 개발된 모형은 미계측 지역에서도 적용이 가능하므로 수자원분야에서 활용성이 높을 것으로 사료된다.

  • PDF

Transient loss analysis of non-insulation high temperature superconducting coil using the field-based data profiling method

  • Hoon Jung;Yoon Seok Chae;June Hee Han;Ji Hyung Kim;Seung Hoon Lee;Ho Chan Kim;Young Soo Yoon;Ho Min Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.38-42
    • /
    • 2023
  • The evaluation of no-insulation (NI) high-temperature superconducting (HTS) typically uses the lumped equivalent circuit (LEC) model. Constant parameters in the NI HTS LEC model accurately predict voltage and central magnetic field at currents below the critical current. However, it is difficult to find constant circuit parameters that simultaneously satisfy the measured voltage and magnetic field under overcurrent conditions. Recent research highlights changes in contact resistance during transient conditions, which may impact power loss estimation in NI HTS coils. Therefore, we confirm the influence of contact resistance changes on loss calculation in the transient state for NI HTS coil. To achieve this, we introduce a measurement data analysis method based on the LEC model and compare it with the LEC model using constant circuit parameters.

Pressure-load Calibration of Multi-anvil Press at Ambient Temperature through Structural Change in Cold Compressed Amorphous Pyrope (비정질 파이로프의 저온 압축에 따른 구조 변화를 이용한 멀티 앤빌 프레스의 상온 압력-부하 보정)

  • Lhee, Juho;Kim, Yong-Hyun;Lee, A Chim;Kim, Eun Jeong;Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.65-73
    • /
    • 2022
  • The proper estimation of physical and chemical properties of Earth materials and their structures at high pressure and high temperature conditions is key to the full understanding of diverse geological processes in Earth and planetary interiors. Multi-anvil press - high-pressure generating device - provides unique information of Earth materials under compression, mainly relevant to Earth's upper mantle. The quantitative estimation of the relationship between the oil load within press and the actual pressure conditions within the sample needs to be established to infer the planetary processes. Such pressure-load calibration has often been based on the phase transitions of crystalline earth materials with known pressure conditions; however, unlike at high temperature conditions, phase transitions at low (or room) temperatures can be sluggish, making the calibration at such conditions challenging. In this study, we explored the changes in Al coordination environments of permanently densified pyrope glasses upon the cold compression using the high-resolution 27Al MAS and 3QMAS NMR. The fractions of highly coordinated Al in the cold compressed pyrope glasses increase with increasing oil load and thus, the peak pressure condition. Based on known relationship between the peak pressure and the Al coordination environment in the compressed pyrope glasses at room temperature, we established a room temperature pressure-load calibration of the 14/8 HT assembly in 1,100-ton multi-anvil press. The current results highlight the first pressure-load calibration of any high pressure device using high-resolution NMR. Irreversible structural densification upon cold compression observed for the pyrope glasses provides insights into the deformation and densification mechanisms of amorphous earth materials at low temperature and high pressure conditions within the subducting slabs.

The Variation of Water Temperature and Turbidity of Stream Flows entering Imha Reservoir (임하호 유입지천의 수온과 탁도 변화)

  • Kim, Woo-Gu;Jung, Kwan-Soo;Yi, Yong-Kon
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.13-20
    • /
    • 2006
  • The changing patterns of water temperature and turbidity in streams entering Imha Reservoir were studied. The turbidity variation near the intake tower in Imha Reservoir was investigated in relation with the variation of water temperature and turbidity in streams. Water temperature was estimated using multi-regression method with air temperature and dew point as independent variables. Peak turbidity was also estimated using non-linear regression method with rainfall intensity as an independent variable. Although more independent variables representing watershed characteristics seem to be needed to increase estimation accuracies, the methodology used in this study can be applied to estimate water temperature and peak turbidity in other streams.