• Title/Summary/Keyword: temperature estimation

Search Result 1,651, Processing Time 0.029 seconds

Electro-Thermal Model Based-Temperature Estimation Method of Lithium-Ion Battery for Fuel-Cell and Battery Hybrid Railroad Propulsion System (하이브리드 철도차량 시스템의 전기-열 모델 기반 리튬이온 배터리 온도 추정 방안)

  • Park, Seongyun;Kim, Jaeyoung;Kim, Jonghoon;Ryu, Joonhyoung;Cho, Inho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.357-363
    • /
    • 2021
  • Eco-friendly hybrid railroad propulsion system with fuel-cell and battery was suggested to reduce carbon dioxide gas and replace retired diesel railroads. Lithium-ion battery with high energy/power density and long lifetime is selected as the energy source at the battery side due to its excellent performance. However, the performance of lithium-ion batteries was affected by temperature, current rate, and operating condition. Temperature is known to be the most influential factor in changing battery parameters. In addition, appropriate thermal management is required to ensure the safe and effective operation of lithium-ion battery. Electro-thermal coupled model with varying parameter depends on temperature, and state-of-charge (SOC) is suggested to estimate battery temperature. The electric-thermal coupled model contains diffusion current using parameter identification by adaptive control algorithm when considering thermal diffusion effect. An experiment under forced convection was conducted using cylindrical cell and 18 parallel-connected battery module to demonstrate the method.

Fundamental characteristic analysis on 6 T-class high-temperature superconducting no-insulation magnet using turn-distributed equivalent circuit model

  • Liu, Q.;Choia, J.;Sim, K.;Kim, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.44-48
    • /
    • 2021
  • In order to obtain ultra-high resolution MRI images, research and development of 11 T or higher superconducting magnets have been actively conducted in the world, recently. The high-temperature superconductor (HTS), first discovered in 1986, was very limited in industrial application until mid-2010, despite its high critical current characteristics in the high magnetic field compared to the low-temperature superconductor. This is because HTS magnets were unable to operate stably due to the thermal damage when a quench occurred. With the introduction of no-insulation (NI) HTS magnet winding technology that does not burn electrically, it could be expected that the HTS magnets are dramatically reduced in weight, volume, and cost. In this paper, a 6 T-class NI HTS magnet for basic characteristic analysis was designed, and a distributed equivalent circuit model of the NI coils was configured to analyze the charging current characteristics caused by excitation current, and the charge delay phenomenon and loss were predicted through the development of a simulation model. Additionally, the critical current of the NI HTS magnets was estimated, considering the magnetic field, its angle and temperature with a given current. The loss due to charging delay characteristics was analyzed and the result was shown. It is meaningful to obtain detailed operation technology to secure a stable operation protocol for a 6T NI HTS magnet which is actually manufactured.

Estimating Reference Crop Evapotranspiration Using Artificial Neural Network and Temperature-based Climatic Data (인공신경망모형을 이용한 기온기반 기준증발산량 산정)

  • Lee, Sung-Hack;Kim, Maga;Choi, Jin-Yong;Bang, Jehong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.95-105
    • /
    • 2019
  • Evapotranpiration (ET) is one of the important factor in Hydrological cycle and irrigation planning. In this study, temperature-based artificial neural network (ANN) model for daily reference crop ET estimation was developed and compared with reference crop evapotranpiration ($ET_0$) from FAO-56 Penman-Monteith method (FAO-56 PM) and parameter regionalized Hargreaves method. The ANN model was trained and tested for 10 weather stations (5 inland stations and 5 costal stations) and two input climate factors, maximum temperature ($T_{max}$), minimum temperature ($T_{min}$), and extraterrestrial radiation (RA) were used for training and validation of temperature-based ANN model. Monthly reference ET by the ANN model also compared with parameter regionalized Hargreaves method for ANN model applicability evaluation. The ANN model evapotranspiration demonstrated more accordance to FAO-56 PM evapotranspiration than the $ET_0$ from parameter regionalized Hargreaves method(R-Hargreaves). The results of this study proposed that daily reference crop ET estimated by the ANN model could be used in the condition of no sufficient climate data.

Measurement of Mass Flow of Water in the Stem of Musk Melon by Sap Flow Gauge (열목지 경유센서에 의한 멜론 경유양의 측정)

  • 강곡명;양원모
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.268-274
    • /
    • 1998
  • The mass flow of water in the stem of melon measured by Sap Flow Gauge was compared with the actual flow calculated by the difference between supply and drainage nutrient water to investigate the possibility and accuracy of estimation of melon's transpiration in rockwool culture. The Sap Flow Gauge which was made with copper-constantan theromocouple and nichrome fiber by our research team, was attached to the 3rd node of melon. The outdoor temperature, room temperature, solar radiation and relative humidity were continually measured. The amount of supply and drainage nutrient water were simultaneously measured for calculation of practical consumption of nutrient water to compare with mass flow of sap. The measuring errors of Sap Flow Gauge were 0.3 to 31.8%, which were small at solar radiation of 20MJ.m$^{2}$.d$^{-1}$ . The mass flow of water was lower for the measured value by Sap Flow Gauge than the actual value at higher solar intensity, however it was higher at lower solar intensity The variation of error rate of each Sap Flow Gauge was 0.1 to 13.0%. The measuring error with Sap Flow Gauge was negatively related with solar intensity and temperature. Therefore, to measure more exactly the mass flow of sap for estimation of melon's transpiration, the compensation factor must be calculated.

  • PDF

Factors Affecting the Wintering Habitat of Major Fishery Resources in Southwestern Korean Waters

  • Kim, Jin-Yeong;Choi, Il-Su;Kim, Joo-Il;Choi, Seok-Gwan;Chun, Young-Yull
    • Ocean Science Journal
    • /
    • v.42 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • We investigated the temperature and salinity effects on the major fish species in the wintering grounds based on trawl surveys and oceanographic observations in the southwestern waters of Korea during March-early April in 2002-2003. The influence area of warm Kuroshio water was limited to the southwestern area of Korea in 2003 with a range of $7.7-16.3^{\circ}C$, 32.54-34.70 of salinity, wider than that of 2002. The number of fish species and density of major fish species in 2003 were higher than in 2002. Geographical estimation showed high proportions of species number and catches in the areas around Jeju Islands, southwestern waters and the southeastern coast of Korea. Five species; silver pomfret (Pam pus echinogaster), hairtail (Trichiurus lepturus), anchovy (Engraulis japonicus), Small yellow croaker (Larimichthys polyactis) and yellow goosefish (Lophius litulon) were most abundant, composing above 60% of the total catch in 2002 and 2003. More than 50% of catch in the major fish species were mostly distributed in the range of $9.5-11.0^{\circ}C$ of temperature and 33.1-33.9 of salinity. Non-parametric estimation for the major species showed the 1st mode around $10^{\circ}C$ and the 2nd mode at $8-9^{\circ}C$ in 2002 and $11-14^{\circ}C$ in 2003. Among major fish species, hairtail was principally composed of juveniles, and larger individuals were caught in southeastern waters. These results are considered to be helpful for the area-based fishery management strategy for the wintering grounds of the Yellow Sea and coastal waters of Korea.

A Study on Estimation of Submarine Groundwater Discharge Distribution Area using Landsat-7 ETM+ images around Jeju island (Landsat-7 ETM+ 영상을 이용한 제주 주변 해역의 해저 용출수 분포 지역 추정 연구)

  • Park, Jae-Moon;Kim, Dae-Hyun;Yang, Sung-Kee;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.7
    • /
    • pp.811-818
    • /
    • 2014
  • This study was aimed to detect Submarine Groundwater Discharge (SGD) distribution image of Sea Surface Temperature (SST) using infrared band of Landsat-7 ETM+ around Jeju island. It is used to analyze SST distribution that DN value of satellite images converted into temperature. The estimation of SGD location is that extracting range of $15{\sim}17^{\circ}C$ from SST. The summer season images(July 28. 2006, Aug. 29. 2006 and Sep. 19. 2008) were used to analyze big difference between SST and temperature of SGD. The results, estimated SGD locations were occurred part of coastal area in northeastern of Jeju island.

A Yield Estimation Model of Forage Rye Based on Climate Data by Locations in South Korea Using General Linear Model

  • Peng, Jing Lun;Kim, Moon Ju;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.3
    • /
    • pp.205-214
    • /
    • 2016
  • The objective of this study was to construct a forage rye (FR) dry matter yield (DMY) estimation model based on climate data by locations in South Korea. The data set (n = 549) during 29 years were used. Six optimal climatic variables were selected through stepwise multiple regression analysis with DMY as the response variable. Subsequently, via general linear model, the final model including the six climatic variables and cultivated locations as dummy variables was constructed as follows: DMY = 104.166SGD + 1.454AAT + 147.863MTJ + 59.183PAT150 - 4.693SRF + 45.106SRD - 5230.001 + Location, where SGD was spring growing days, AAT was autumnal accumulated temperature, MTJ was mean temperature in January, PAT150 was period to accumulated temperature 150, SRF was spring rainfall, and SRD was spring rainfall days. The model constructed in this research could explain 24.4 % of the variations in DMY of FR. The homoscedasticity and the assumption that the mean of the residuals were equal to zero was satisfied. The goodness-of-fit of the model was proper based on most scatters of the predicted DMY values fell within the 95% confidence interval.

Study on Validity of 1-D Spherical Model on Aqua-plasma Power Estimation With Electrode Structure

  • Yun, Seong-Yeong;Jang, Yun-Chang;Kim, Gon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.74-74
    • /
    • 2010
  • The aqua-plasma is the non-thermal plasma in electrical conductive electrolyte by generates the vapor film layer on the immersed metal electrode surface. This plasma can generate the hydroxyl radical by dissociate the water molecule with the plasma electron. To develop the plasma discharge device for high efficiency in the hydroxyl radical generation, proper model for estimation of plasma power is necessary. In this work, the 1-D spherical model was developed, considering temperature dependence material constants. The relation between the plasma power and hydroxyl generation was also studied by the comparison between the optical emission intensity from the hydroxyl radical using monochromator and estimated plasma power. First, the thickness of vapor layer thickness was estimated using the Navier-Stokes fluid equation in order to calculate the discharge E-field inside vapor layer. Using the E-field magnitude and power balance on the plasma generation, it was possible to estimate the plasma power. The plasma power was assumed to uniformly fill the vapor layer and the temperature of vapor layer was fixed in the boiling temperature of electrolyte, 375K. In the experiment, the aqua-plasma was discharged in the saline by applied the voltage on the bipolar electrode. The range of applied voltage was 234 to 280V-rms in the frequency of 380 kHz. Two type electrodes were produced with two ${\Phi}0.2$ tungsten. The plasma power was estimated from the V-I signal from the two high voltage probes and current probe. The estimated plasma power agreed with the profile of emission intensity when the plasma discharged between the metal electrode and vapor layer surface. However, when the plasma discharged between the metal electrodes, the increasing rate of emission intensity was lower than the increase of plasma power. It implies that the surface reaction is more sufficient rather than the volume reaction in the radical generation, due to the high density of water molecule in the liquid.

  • PDF

Optimal Weather Variables for Estimation of Leaf Wetness Duration Using an Empirical Method (결로시간 예측을 위한 경험모형의 최적 기상변수)

  • K. S. Kim;S. E. Taylor;M. L. Gleason;K. J. Koehler
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2002
  • Sets of weather variables for estimation of LWD were evaluated using CART(Classification And Regression Tree) models. Input variables were sets of hourly observations of air temperature at 0.3-m and 1.5-m height, relative humidity(RH), and wind speed that were obtained from May to September in 1997, 1998, and 1999 at 15 weather stations in iowa, Illinois, and Nebraska, USA. A model that included air temperature at 0.3-m height, RH, and wind speed showed the lowest misidentification rate for wetness. The model estimated presence or absence of wetness more accurately (85.5%) than the CART/SLD model (84.7%) proposed by Gleason et al. (1994). This slight improvement, however, was insufficient to justify the use of our model, which requires additional measurements, in preference to the CART/SLD model. This study demonstrated that the use of measurements of temperature, humidity, and wind from automated stations was sufficient to make LWD estimations of reasonable accuracy when the CART/SLD model was used. Therefore, implementation of crop disease-warning systems may be facilitated by application of the CART/SLD model that inputs readily obtainable weather observations.

Estimation on clamping load of high strength bolts considering various environment conditions

  • Nah, Hwan-Seon;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • Of high strength bolts, the torque shear type bolt is known to be clamped normally when pin-tails are broken. Sometimes the clamping loads on slip critical connections considerably fluctuate from the required tension due to variation of torque coefficient. This is why the viscosity of lubricant affects the torque coefficient by temperature. In this study, the clamping tests of high strength bolts were performed independently at laboratory conditions and at outdoor environment. The temperatures of outdoor environment candidates were ranged from $-11^{\circ}C$ to $34^{\circ}C$ for six years. The temperature at laboratory condition was composed from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. At outdoor environment conditions, the clamping load of high strength bolt was varied from 159 to 210 kN and the torque value was varied from 405 to 556 Nm. The torque coefficients at outdoor environment were calculated from 0.126 to 0.158 when tensions were measured from 179 to 192 kN by using tension meter. The torque coefficients at outdoor environment conditions were analyzed as the range from 0.118 to 0.152. From these tests, the diverse equations of torque coefficient, tension dependent to temperature can be acquired by statistic regressive analysis. The variable of torque coefficient at laboratory conditions is 0.13% per each $1^{\circ}C$ when it reaches 2.73% per each $1^{\circ}C$ at outdoor environment conditions. When the results at laboratory conditions and at outdoor environment were combined to get the revised equations, the change in torque coefficient was modified as 0.2% per each $1^{\circ}C$ and the increment of tension was adjusted as 1.89 % per each $1^{\circ}C$.