References
- Abdi, H. 2007. Part (semi partial) and partial regression coefficients. Encyclopedia of measurement and statistics. 736-740.
- Ahn, J.H., Kim, K.D. and Lee, J.T. 2014. Growth Modeling of Chinese Cabbage in an Alpine Area. Korean Journal of Agricultural and Forest Meteorology. 16(4):309-315. https://doi.org/10.5532/KJAFM.2014.16.4.309
- Allison, P.D. 1999. Multiple regression: A primer. Pine Forge Press, Newbury Park, CA, U.S.A. p142.
- Bushuk, W. 1993. Rye Production and Uses Worldwide. In: R. Macrae, R. K. Robinson, and M. J. Sadler (Ed.), Encyclopaedia of Food Science and Technology, vol. 6. Academic Press. London. UK. pp. 3946-3950.
- Cao, W. and Moss, D.N. 1997. Modelling phasic development in wheat: a conceptual integration of physiological components. The Journal of Agricultural Science. 129(2), 163-172. https://doi.org/10.1017/S0021859697004668
- Chang, J. and Clay, D.E. 2005. Identifying factors for corn yield prediction models and evaluating model selection methods. Korean Journal of Crop Science. 50(4):268-275.
- Cohen, J., Cohen, P., West, S.G. and Aiken, L.S. 2003. Applied multiple regression/correlation analysis for the behavioral sciences. Routledge, New York, U.S.A. pp. 310-316.
- Dahikar, S.S. and Rode, S.V. 2014. Agricultural crop yield prediction using artificial neural network approach. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering. 2(1):683-686.
- Delgado, C.L. 2003. Rising consumption of meat and milk in developing countries has created a new food revolution. The journal of nutrition. 133(11):3907S-3910S. https://doi.org/10.1093/jn/133.11.3907S
- Farrar, D.E. and Glauber, R.R. 1967. Multicollinearity in regression analysis: the problem revisited. The Review of Economic and Statistics. 92-107.
- Harvey, M. and Pilgrim, S. 2011. The new competition for land: food, energy, and climate change. Food Policy. 36:S40-S51. https://doi.org/10.1016/j.foodpol.2010.11.009
- Hauke, J. and Kossowski, T. 2011. Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data. Quaestiones geographicae. 30(2):87-93.
- Huang, J. and Han, D. 2014. Meta-analysis of influential factors on crop yield estimation by remote sensing. International Journal of Remote Sensing. 35(6):2267-2295.
- Johansson, D.J.A. and Azar, C. 2007. A scenario based analysis of land competition between food and bioenergy production in the US. Climatic Change. 82(3-4):267-291. https://doi.org/10.1007/s10584-006-9208-1
- Kent, N.L. 1983. Rye and triticale. In: Technology of Cereals. 3rd ed. Pergamon Press, Oxford. pp.175-183.
- Kim, K.D., Sung, K.I., Jung, J.I., Lee, E.J., Kim, E.J., Nejad, J.G., Jo, M.H. and Lim, Y.C. 2012. Suitability classes for Italian ryegrass (Loliummultiflorum Lam) using soil and climate digital database in Gangwon Province. The Korean Society of Grassland and Forage Science. 32(4), 437-446. https://doi.org/10.5333/KGFS.2012.32.4.437
- Kim, K.D., Sung, K.I., Joo, J.H., Kim, B.W., Peng, J.L., Lee, B.H., Nejad, J.G., Jo, M.H. and Lim, Y.C. 2013. Suitability Classes for Whole Crop Barley Using Soil and Climate Digital Database in Gangwon Province, Journal of Agricultural, Life and Environmental Sciences. 25(3), 26-31.
- Kim, K.D., Suh, J.T., Lee, J.N., Yoo, D.L., Kwon, M. and Hong, S.C. 2015. Evaluation of factors related to productivity and yield estimation based on growth characteristics and growing degree days in highland Kimchi cabbage. Korean Journal of Horticultural Science & Technology. 33(6):911-922. https://doi.org/10.7235/hort.2015.15074
- Kim, M.R. and Kim, S.G. 2014. Examining Impact of Weather Factors on Apple Yield. Korean Journal of Agricultural and Forest Meteorology. 16(4):274-284. https://doi.org/10.5532/KJAFM.2014.16.4.274
- Kim, S.Y., Park, C.K., Gwon, H. S., Khan, M. I., and Kim, P. J. 2015. Optimizing the harvesting stage of rye as a green manure to maximize nutrient production and to minimize methane production in mono-rice paddies. Science of the Total Environment. 537:441-446. https://doi.org/10.1016/j.scitotenv.2015.07.061
- Kryvobok, O. 2000. Estimation on the productivity parameters on wheat crops using high resolution satellite data. International Archives of Photogrammetry and Remote Sensing. 33(B7/2; PART 7): 717-722.
- Lee, H. and Moon, A. 2014. Development of yield prediction system based on real-time agricultural meteorological information. Proceedings of 16th International Conference on Advanced Communication Technology. IEEE. 1292-1295.
- Lee, S.G., Seo, T.C., Jang, Y.A., Lee, J.G., Nam, C.W., Choi, C.S., Yeo, K.H. and Um, Y.C. 2012. Prediction of Chinese cabbage yield as affected by planting date and nitrogen fertilization for spring production. Journal of Bio-Environment Control. 21(3), 271-275.
- Lorenz, K.J. 1991. Rye. In: K. J. Lorenz and K. Kulp (Ed.), Handbook of Cereal Science and Technology. Marcel Dekker, New York, U.S.A. pp.331-371.
- Na, S.I., Lee, K.D., Baek, S.C. and Hong, S.Y. 2015. Estimation of Chinese Cabbage Growth by RapidEye Imagery and Field Investigation Data. Korean Journal of Soil Science and Fertilizer. 48(5):556-563. https://doi.org/10.7745/KJSSF.2015.48.5.556
- IPCC, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, (Ed.), Cambridge University Press, Cambridge, UK, 976pp.
- Peng, J.L., Kim, M.J., Kim, Y.J., Jo, M.H., Nejad, J.G., Lee, B.H., Ji, D.H., Kim, J.Y., Oh, S.M., Kim, B.W., Kim, K.D., So, M.J., Park, H.S. and Sung, K.I. 2015. Detecting the Climate Factors related to Dry Matter Yield of Whole Crop Maize. Korean Journal of Agricultural and Forest Meteorology. 17(3):261-269. https://doi.org/10.5532/KJAFM.2015.17.3.261
- Rathmann, R., Szklo, A. and Schaeffer, R. 2010. Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate. Renewable Energy. 35(1):14-22. https://doi.org/10.1016/j.renene.2009.02.025
- Schlenker, W. and Roberts, M.J. 2006. Estimating the Impact of Climate Change on Crop Yield: The Importance of Non Linear Temperature Effects. No. w13799. National Bureau of Economic Research, 2008.
- SPSS (2012). IBM SPSS Statistics 21.0. IBM Corp., Somers, New York. U.S.A.
- Takahashi, S. 2002. A Model Predicting Forage Maize Growth Based on Temperature and Solar Radiation. Grassland Science. 48(1), 43-49.
- Yun, J.I. 2003. Predicting regional rice production in South Korea using spatial data and crop-growth modeling. Agricultural Systems. 77(1):23-38. https://doi.org/10.1016/S0308-521X(02)00084-7
- Zhang, H., Chen, H. and Zhou, G. 2012. The model of wheat yield forecast based on modis-ndvi: a case study of Xinxiang. Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress.
Cited by
- Accuracy evaluation of the crop-weather yield predictive models of Italian ryegrass and forage rye using cross-validation vol.20, pp.4, 2017, https://doi.org/10.1007/s12892-017-0090-0
- Climatic Suitability Mapping of Whole-Crop Rye Cultivation in the Republic of Korea vol.38, pp.4, 2018, https://doi.org/10.5333/KGFS.2018.38.4.337
- Yield modeling for prediction of regional whole-crop barley productivity pp.17446961, 2019, https://doi.org/10.1111/grs.12233