• Title/Summary/Keyword: temperature estimation

Search Result 1,651, Processing Time 0.039 seconds

The Land Surface Temperature Distributions of Jeju Island using Landsat 7/ETM+ Data

  • Lee Byung-Gul
    • Journal of the Korean earth science society
    • /
    • v.26 no.2
    • /
    • pp.109-113
    • /
    • 2005
  • In this study, the estimation of the temperature distribution of Jeju Island with coastal ocean derived from the thermal band of Landsat 7/ETM+ of January 6, 2003 was carried out. For the computation of the temperature of the island and the coastal ocean based on the thermal band, we used NASA method wiich is the 8 bit Digital Number(DN) converted into spectral radiance. The computed results showed that the land temperature variations were from 0 to 12 Celsius degrees, and a good agreement with the observation ones based on the method. However, the ocean surface temperature was not much changed ground 15 degree since the water was well mixed between the coastal and the offshore ocean. The interesting results were that the temperature distributions of the southern part(Seogwipo City) of Jeju Island were higher than those of the north one(Jeju City) by more than 2 Celsius degree at the same height although the distance between the Jeju and the Seogwipo is only about 35km in winter season. The reason was found that the solar irradiance intensity of the south part was stronger than the north one by Halla mountain in winter season only. From the results, we found that the seasonal variations of solar irradiation and the height of Mt. Halla were an important role of temperature distribution of Jeju Island.

A Basic Study on the Variation of Temperature Characteristics for Attenuation Coefficient and Sound Velocity in Biological Tissues

  • Park, Heung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.273-282
    • /
    • 1993
  • This study is concerned with the temperature dependence characteristics of ultrasound parameters in biological tissues, which are basic on the noninvasive deep body temperature estimation. Used parameters are ultrasonic attenuation coefficient and sound velocity In order to accomplishment our purpose, several signal processing methods were used. Attenua4iorl coefficient was estimated by spectral difference method and sound velocity was estimated by P-P method. And we also examined these methods through a series of IN VITRO experi mentis that used tissue-mimicking phantom samples and biological tissue samples. In order to imitate the biological soft tissue two kinds of phantom samples are used, one is agar phantom sample which is composed of agar, graphite, N-propyl alcohol and distilled water, and the other is fat phantom sample which is composed of pure animal fat. And the ultrasound transmission mode and reflection mode experiments are performed on the pig's spleen, kidney and fat. As a result, it is found that the temperature characteristics are uniform in case of phan- tom samples but not in biological tissues because of complicate wave propagation within them. Consequently, the possibility of temperature measurement using ultrasound on biological tissue is confirmed and its results may contribute to the establishment of reference values of internal temperature measurement of biological tissues.

  • PDF

Characteristics of Temperature History at Each Section of Mat Foundation Concrete Applying Double Bubble Sheets (이중버블시트를 적용한 매트 기초콘크리트의 부위별 온도이력 특성)

  • Kim, Tae-Cheong;Kim, Jong;Jeon, Chung-Keun;Shin, Dong-An;Oh, Seon-Kyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.13-14
    • /
    • 2016
  • This study is aimed to analyze temperature history at each section of mat foundation concrete applying double bubble sheets. The results of the study are as follows. Firstly, the results of measuring the temperature history indicate that the lowest external temperature has been recorded at -5.6℃ for the three-day measurement period. For the central section, the result indicates that the lower, center and upper part have all secured the concrete curing temperature of 18℃ or higher. This results are believed to have resulted from excellent heat insulation performance of double bubble sheets. For the edge section between the edge form and the concrete interface, the temperature has been measured, on average, approximately 12℃ lower than the central section. However, all measured sections have indicated the temperature of 5℃ or higher. Meanwhile, an analysis has been conducted through the estimation equation of compressive strength of maturity during the curing period in order to examine the possibility of early frost damage and the aspect of securing strength. It has been confirmed that the compressive strength is higher than 50°D·D, namely, 5MPa, on the 3rd day of the aging process, which allows early frost damage to be avoided.

  • PDF

Analysis of Temperature Effects on Microbial Growth Parameters and Estimation of Food Shelf Life with Confidence Band

  • Park, Jin-Pyo;Lee, Dong-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.104-111
    • /
    • 2008
  • As a way to account for the variability of the primary model parameters in the secondary modeling of microbial growth, three different regression approaches were compared in determining the confidence interval of the temperature-dependent primary model parameters and the estimated microbial growth during storage: bootstrapped regression with all the individual primary model parameter values; bootstrapped regression with average values at each temperature; and simple regression with regression lines of 2.5% and 97.5% percentile values. Temperature dependences of converted parameters (log $q_o$, ${\mu}_{max}^{1/2}$, log $N_{max}$) of hypothetical initial physiological state, maximum specific growth rate, and maximum cell density in Baranyi's model were subjected to the regression by quadratic, linear, and linear function, respectively. With an advantage of extracting the primary model parameters instantaneously at any temperature by using mathematical functions, regression lines of 2.5% and 97.5% percentile values were capable of accounting for variation in experimental data of microbial growth under constant and fluctuating temperature conditions.

Estimation of Future Death Burden of High Temperatures from Climate Change (기후변화로 인한 고온의 미래 사망부담 추정)

  • Yang, Jihoon;Ha, Jongsik
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.19-31
    • /
    • 2013
  • Objectives: Elevated temperatures during summer months have been reported since the early 20th century to be associated with increased daily mortality. However, future death impacts of high temperatures resulting from climate change could be variously estimated in consideration of the future changes in historical temperature-mortality relationships, mortality, and population. This study examined the future death burden of high temperatures resulting from climate change in Seoul over the period of 2001-2040. Methods: We calculated yearly death burden attributable to high temperatures stemming from climate change in Seoul from 2001-2040. These future death burdens from high temperature were computed by multiplying relative risk, temperature, mortality, and population at any future point. To incorporate adaptation, we assumed future changes in temperature-mortality relationships (i.e. threshold temperatures and slopes), which were estimated as short-term temperature effects using a Poisson regression model. Results: The results show that climate change will lead to a substantial increase in summer high temperature-related death burden in the future, even considering adaptation by the population group. The yearly death burden attributable to elevated temperatures ranged from approximately 0.7 deaths per 100,000 people in 2001-2010 to about 1.5 deaths per 100,000 people in Seoul in 2036-2040. Conclusions: This study suggests that adaptation strategies and communication regarding future health risks stemming from climate change are necessary for the public and for the political leadership of South Korea.

Preliminary Study on Image Processing Method for Concrete Temperature Monitoring using Thermal Imaging Camera (열화상카메라 기반 콘크리트 온도 측정을 위한 이미지 프로세싱 적용 기초 연구)

  • Mun, Seong-Hwan;Kim, Tae-Hoon;Cho, Kyu-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.206-207
    • /
    • 2020
  • Accurate estimation of concrete strength development at early ages is a critical factor to secure structural stability as well as to speed up the construction process. The temperature generated from the heat of hydration is considered as a key parameter in predicting the early age strength. Conventionally, concrete temperature has been measured by temperature sensors installed inside concrete. However, considering the measurement on building structures with multiple floors, this method requires reinstallation and repositioning of hardware such as sensors, data loggers and routers for data transfer. This makes the temperature monitoring work cumbersome and inefficient. Concrete temperature monitoring by using thermal remote sensing can be an effective alternative to supplement those shortcomings. In this study, image processing was carried out through K-means clustering technique, which is a unsupervised learning method, and the classification results were analyzed accordingly. In the future, research will be conducted on how to automatically recognize concrete among various objects by using deep learning techniques.

  • PDF

Estimation on the Distribution Function for Coastal Air Temperature Data in Korean Coasts (한반도 연안 기온자료의 분포함수 추정)

  • Jeong, Shin Taek;Cho, Hongyeon;Ko, Dong Hui;Hwang, Jae Dong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.278-284
    • /
    • 2014
  • Water temperature due to climate change can be estimated using the air temperature because the air and water temperatures are closely related and the water temperatures have been widely used as the indicators of the environmental and ecological changes. It is highly necessary to estimate the frequency distribution of the air and water temperatures, for the climate change derives the change of the coastal water temperatures. In this study, the distribution function of the air temperatures is estimated by using the long-term coastal air temperature data sets in Korea. The candidate distribution function is the bi-modal distribution function used in the previous studies, such as Cho et al.(2003) on tidal elevation data and Jeong et al.(2013) on the coastal water temperature data. The parameters of the function are optimally estimated based on the least square method. It shows that the optimal parameters are highly correlated to the basic statistical informations, such as mean, standard deviation, and skewness coefficient. The RMS error of the parameter estimation using statistical information ranges is about 5 %. In addition, the bimodal distribution fits good to the overall frequency pattern of the air temperature. However, it can be regarded as the limitations that the distribution shows some mismatch with the rapid decreasing pattern in the high-temperature region and the some small peaks.