• Title/Summary/Keyword: temperature estimation

Search Result 1,651, Processing Time 0.027 seconds

Application of Automatic Stormwater Monitoring System and SWMM Model for Estimation of Urban Pollutant Loading During Storm Events (빗물 자동모니터링장치와 SWMM 모델을 이용한 강우시 도시지역 오염부하량 예측에 관한 연구)

  • Seo, Dongil;Fang, Tiehu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.373-381
    • /
    • 2012
  • An automatic flow and water quality monitoring system was applied to estimate pollutant loads to an urban stream during storm events in DTV (Daeduk Techno Valley), Daejeon, Korea. The monitoring system consists of rainfall gage, ultrasonic water level meter, water quality sensors for DO, temperature, pH, conductivity, turbidity and automatic water sampler for further laboratory analysis. All data are transmitted through on-line system and the monitoring system is designed to be controlled manually in the field and remotely from laboratory computer. Flow rates were verified with field measurements during storm events and showed good agreements. Automatic sampler was used to collect real time samples and analyzed for BOD, COD, TN, TP, SS and other pollutant concentrations in the laboratory. SWMM (Storm Water Management Model) urban watershed model was applied and calibrated using the observed flow and water quality data for the study area. While flow modeling results showed good agreement for all events, water quality modeling results showed variable levels of agreement. These results indicate that current options in the SWMM model to predict pollutant build up and wash-off effects are not sufficient to satisfy modeling of all the rainfall events under study and thus need further modification. This study showed the automatic monitoring system can be used to provide data to assist further refinement of modeling accuracy. This automatic stormwater monitoring and modeling system can be used to develop basin scale water quality management strategies of urban streams in storm events.

Analysis and Prediction for Spatial Distribution of Functional Feeding Groups of Aquatic Insects in the Geum River (금강 수계 수서곤충 섭식기능군의 공간분포 분석 및 예측)

  • Kim, Ki-Dong;Park, Young-Jun;Nam, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.99-118
    • /
    • 2012
  • The aim of this study is to define a correlation between spatial distribution characteristics of FFG(Functional Feeding Groups) of aquatic insects and related environmental factors in the Geum River based on the theory of RCC(River Continuum Concept). For that objective we had used SMRA(Stepwise Multiple Regression Analysis) method to analyze close relationship between the distribution of aquatic insects and the physical and chemical factors that may affect their inhabiting environment in the study area. And then, a probabilistic method named Frequency Ratio Model(FRM) and spatial analysis function of GIS were applied to produce a predictive distribution map of biota community considering their distribution characteristics according to the environmental factors as related variables. As a result of SMRA, the values of decision coefficient for factors of elevation, stream width, flow velocity, conductivity, temperature and percentage of sand showed higher than 0.5. Therefore these 6 environmental factors were considered as major factors that might affect the distribution characteristics of aquatic insects. Finally, we had calculated RMSE(Root Mean Square Error) between the predicted distribution map and prior survey database from other researches to verify the result of this study. The values of RMSE were calculated from 0.1892 to 0.4242 according to each FFG so we could find out a high reliability of this study. The results of this study might be used to develop a new estimation method for aquatic ecosystem with macro invertebrate community and also be used as preliminary data for conservation and restoration of stream habitats.

Vegetation Landscape Characteristics and Assessment of Biotope Diversity in the Isolated Forests on the Urban Areas: Case Study on the Three Parks, Daegu Metropolitan City (도시내(都市內) 고립(孤立)된 임지(林地)의 식생경관(植生景觀) 특성(特性)과 비오톱 다양성(多樣性) 평가(評價): 대구광역시(大邱廣域市) 3개(個) 공원(公園)을 대상(對象)으로)

  • Kwon, Jino;Cho, Hyun-Je;Choi, Myong-Sub;Oh, Jeong-Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.462-467
    • /
    • 2005
  • This study aims to classify the biotope types and evaluate its functions for acquiring the basic information which can support the landscape ecological management of the urban forest in the case of the three parks in Daegu metropolitan city and then to analyze vegetation landscape patterns. The biotope classification was mostly divided into 5 to 6 biotope type groups in the high units and 15 to 20 biotope types belong to them and then could know that the more big the park size, the more diverse and large the biotope types and its average area. The biotope grade over the three parks was dominating low rank grade (1 to 3 grade) 72.7% that forest organism is inadequate as live, and high grade (7 to 9 grade) did not appear entirely. Most in Biotope function estimation were appeared less than the middle rank grade and biotope area is bigger, those grade rises and temperature could know that is fallen. Vegetation landscape patterns was very simple because only two kinds of Robinia pseudo-acacia and Quercus acutissima is appeared as the dominated landscape elements in all of the three parks. And also because average area of those elements is generally 1ha or so, there was much problems in consecutiveness of functional role as forest ecosystem component. Conclusively, Ecological landscape management need to improve Biotope diversity and functionality, and it secures ecological minimal area and space linkage.

Shelf-life Estimation and Sorption Characteristics of Coated Ascorbic Acid by Fluidized Bed Coating (유동층 코팅 처리한 Ascorbic acid의 흡습특성 및 저장기간 예측)

  • Park, Su-Jung;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.332-339
    • /
    • 2008
  • This study was performed to investigate the sorption characteristics and shelf-life of coated ascorbic acid Stability of ascorbic acid, which oxidizes easily during storage and processing, was achieved by applying a fluidized bed coating using Zein-DP and HPMC-FCC as covering materials. The monolayer moisture content calculated using the GAB equation showed a higher level of significance than when calculated using the BET equation. The fit to the isotherm curve was in the order of Halsey, Caurie, Oswin and Khun. The equilibrium relative humidity prediction model was established in terms of time and water activity, it had higher significance. The stability of the coated ascoribic acid during storage was investigated in terms of radical-scavenging activity, which decreased with increasing time of storage and was more affected at higher storage temperatures. The quality reduction rate constant (k) was calculated by a first-order reaction rate. The reaction rate constant increased with increasing storage temperature. The shelf-life of Zein-DP-coated ascorbic acid was estimated to be 45.83 days at 20C and 63.19 days at 10C, and the shelf-life for HPMC-FCC-coated ascorbic acid was estimated to be 28.84 days at 20C and 36.14 days at 10, the ascorbic acid was 24.52 days at $20^{\circ}C$ and 27.22 days at $10^{\circ}C$, respectively. Therefore, the fluidized bed coating effectively increased the stability of ascorbic acid.

Streamflow Estimation using Coupled Stochastic and Neural Networks Model in the Parallel Reservoir Groups (추계학적모형과 신경망모형을 연계한 병렬저수지군의 유입량산정)

  • Kim, Sung-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.195-209
    • /
    • 2003
  • Spatial-Stochastic Neural Networks Model(SSNNM) is used to estimate long-term streamflow in the parallel reservoir groups. SSNNM employs two kinds of backpropagation algorithms, based on LMBP and BFGS-QNBP separately. SSNNM has three layers, input, hidden, and output layer, in the structure and network configuration consists of 8-8-2 nodes one by one. Nodes in input layer are composed of streamflow, precipitation, pan evaporation, and temperature with the monthly average values collected from Andong and Imha reservoir. But some temporal differences apparently exist in their time series. For the SSNNM training procedure, the training sets in input layer are generated by the PARMA(1,1) stochastic model and they covers insufficient time series. Generated data series are used to train SSNNM and the model parameters, optimal connection weights and biases, are estimated during training procedure. They are applied to evaluate model validation using observed data sets. In this study, the new approaches give outstanding results by the comparison of statistical analysis and hydrographs in the model validation. SSNNM will help to manage and control water distribution and give basic data to develop long-term coupled operation system in parallel reservoir groups of the Upper Nakdong River.

Estimation of Daily Sewage and Direct Runoff for the Combined Sewer System of Gunja Experimental Drainage (군자 시험배수구역 합류식 하수관거시스템의 일일하수량 및 직접유출량 산정)

  • Kim, Chung-Soo;Han, Myoung-Sun;Kim, Hyoung-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.191-200
    • /
    • 2009
  • A localized torrential rainfall and flash floods which are more frequently occurred by extraordinary atmospheric phenomena and rising sea surface temperature require more hydrological data collecting and analysis for small watershed. Urban watershed hydrological data monitoring system is needed because of big flood potential damage and lack of urban watershed hydrological data. Therefore, Urban Flood Disaster Management Research Center operates small experimental catchments(Sinnae1, Gunja, and Children's Park) observing and analyzing hydrological data(rainfall, stage, and discharge). In this study, the discharge of combined sewage for Gunja experimental drainage is analyzed with weekly data and day of the week data. Through several analyses in analyzing the urban runoff characteristics and managing the urban sewage system, direct runoff is calibrated and verified by the estimated values of rainfall-runoff model(SWMM).

Estimation of Surplus Solar Energy in Greenhouse Based on Region (지역별 온실내의 잉여 태양에너지 산정)

  • Yoon, Yong-Cheol;Im, Jae-Un;Kim, Hyeon-Tae;Kim, Young-Joo;Suh, Won-Myung
    • Journal of agriculture & life science
    • /
    • v.45 no.4
    • /
    • pp.135-141
    • /
    • 2011
  • This research was conducted to provide basic data of surplus heat for designing solar heat-storage systems. The surplus heat is defined as the heat exhausted by forced ventilations from the greenhouses to control the greenhouse temperature within setting limits. Various simulations were performed to compare the differences of thermal behaviors among greenhouse types as well as among several domestic areas by using pseudo-TMY (Typical Meteorological Year) data manipulated based both on the weather data supplied from Korean Meteorological Administration and the TMY data supplied from The Korean Solar Energy Society. Additional analyses were carried out to examine the required heating energy together with some others such as the energy balances in greenhouses to be considered. The results of those researches are summarized as follows. Regional surplus solar heats for the nine regions with 4-type were analyzed. The results showed that the ratio of surplus solar energy compared to heating energy was the highest in Jeju (about 212.0~228.0%) for each greenhouse type. And followed by Busan, Kwangju, Jinju, Daegu, Daejeon, Jeonju, Suwon and Daekwanryung. And irrespective of greenhouse types, surplus solar energy alone could cover up nearly all of the required supplemental heating energy except for a few areas.

Estimation of Total Precipitable Water from MODIS Infrared Measurements over East Asia (MODIS 적외 자료를 이용한 동아시아 지역의 총가강수량 산출)

  • Park, Ho-Sun;Sohn, Byung-Ju;Chung, Eui-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.309-324
    • /
    • 2008
  • In this study the retrieval algorithms have been developed to retrieve total precipitable water (TPW) from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) infrared measurements using a physical iterative retrieval method and a split-window technique over East Asia. Retrieved results from these algorithms were validated against Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) over ocean and radiosonde observation over land and were analyzed for investigating the key factors affecting the accuracy of results and physical processes of retrieval methods. Atmospheric profiles from Regional Data Assimilation and Prediction System (RDAPS), which produces analysis and prediction field of atmospheric variables over East Asia, were used as first-guess profiles for the physical retrieval algorithm. We used RTTOV-7 radiative transfer model to calculate the upwelling radiance at the top of the atmosphere. For the split-window technique, regression coefficients were obtained by relating the calculated brightness temperature to the paired radiosonde-estimated TPW. Physically retrieved TPWs were validated against SSM/I and radiosonde observations for 14 cases in August and December 2004 and results showed that the physical method improves the accuracy of TPW with smaller bias in comparison to TPWs of RDAPS data, MODIS products, and TPWs from split-window technique. Although physical iterative retrieval can reduce the bias of first-guess profiles and bring in more accurate TPWs, the retrieved results show the dependency upon initial guess fields. It is thought that the dependency is due to the fact that the water vapor absorption channels used in this study may not reflect moisture features in particular near surface.

RADARSAT SAR Investigations of Lineament and Spring Water in Cheju Island (RADARSAT SAR 자료를 이용한 제주도 선구조 연구 및 용천 특성 연구)

  • 원중선;류주형;지광훈
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.325-342
    • /
    • 1998
  • Two RADARSAT SAR images with different modes acquired by Canadian Space Agency to test the effectiveness of geological lineament extraction and spring water detection over the Cheju Island. Geological lineaments are poorly developed this basalt dominant volcanic island, but more linear features can be extracted when SAR and TM images are simultaneously analyzed than when TM image alone is used. This results mainly owe to the facts that RADARSAT SAR systems are able to provide data with different frequencies, azimuth, and incidence angles. Distribution of spring water along coast is poorly correlated with geological lineaments or drainage pattern, but those in middle range of mountain region are developed along geological lineaments. Detection of spring water using remotely sensed images are turned out to be very difficult to achieve. Radial shaped sea surface temperature anomaly derived from TM thermal band should be the best candidate for spring water, but the resolution is not high enough. We also investigate the normalized radar cross section (or sigma naught) converted from RADARSAT and ERS-1 SAR data but to discriminate the spring water effectively except where relatively large water mass is observed on land side. Speckle noise and irregularity in physical sea surface condition are the serious obstacles for this application. ERS-1 SAR image acquired in low incidence angle was more useful for geological lineament estimation and water body study than RADARSAT SAR images with high incidence angles. Therefore the selection of incidence angle is critical in geological and spring water applications of SAR images, and low incidence angles less than about 30$^{\circ}$ are recommended to monitor the Cheju volcanic island.

A CFD Study of Oil Spill Velocity from Hole in the Hull of Oil Tanker (유조선 선체 파공에 따른 원유 유출 유속의 CFD 연구)

  • Choi, Dooyoung;Lee, Jungseop;Paik, Joongcheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.71-71
    • /
    • 2018
  • Sea pollution accidents have been occurred due to the increase of marine ship traffic. Oil spill from the hull hole induced by tanker collision results in the huge sea pollution. Proper and prompt reaction on such oil spill disaster is needed to minimize the damage. Thru-hull emergency wood plug is typically used to manually close small holes, while it is required to develop some mechanical devices for closing large holes in the hull due to huge fluid pressure. Accurate estimation of oil discharge and velocity from such holes are important to develop proper device to control hull hole damage. High resolution CFD modeling investigation on the configurations of hull hole of 7.5 m initial depth and 30 cm diameter, which was observed in the oil spill accident of the Hebei Sprit off the west coast of Korea in 2007, has been carried out to compute the oil spill velocity distribution in terms of flow depth. Friction loss due to the viscous flow and the discharge coefficient of crude oil with specific gravity SG = 0.85 and viscosity of $4-12cP(mPa{\cdot}s)$ at the temperature of $20^{\circ}C-100^{\circ}C$ are presented in terms of Reynolds number based on the results of high-resolution CFD modeling.

  • PDF