• Title/Summary/Keyword: temperature estimation

Search Result 1,651, Processing Time 0.023 seconds

Numerical Investigation of Blackbody Design for Spaceborne Image Sensor Non-uniformity Characteristic Calibration (우주용 영상센서 출력특성 교정용 흑체 설계의 해석적 유효성 검토)

  • Kim, Hye-In;Choi, Pil-Gyeong;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.42-50
    • /
    • 2020
  • For calibration of the non-uniformity characteristics of the space-borne infrared (IR) sensor, a black body system shall provide estimated representative surface temperature at various reference temperatures by using the limited number of temperature sensors. The black body system proposed in this study has an I/F flange integrated on the rear side of the black body for installation of the heat pipe to transfer the residual heat after the black body heat-up. This design allows for obtaining a circular symmetric thermal contour of black body with low surface temperature gradient, leading to much easier representative temperature estimation. Additionally, this provides mechanically stable thermal I/F under launch and on-orbit environmental loads, as well as allowing a fail safe design by using the two heat pipes. Also, a highly accurate temperature estimation is possible even if the temperature sensors are attached on the surface on the rear side of the black body. The effectiveness of the thermal design of the proposed black body has been verified through the on-orbit thermal analysis. Based on the results, the representative surface temperature was estimated according to the number and position of the temperature sensors.

Optimal Temperature Tracking Control of a Polymerization Batch Reactor by Adaptive Input-Output Linearization

  • Noh, Kap-Kyun;Dongil Shin;Yoon, En-Sup;Rhee, Hyun-Ku
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.62-74
    • /
    • 2002
  • The tracking of a reference temperature trajectory in a polymerization batch reactor is a common problem and has critical importance because the quality control of a batch reactor is usually achieved by implementing the trajectory precisely. In this study, only energy balances around a reactor are considered as a design model for control synthesis, and material balances describing concentration variations of involved components are treated as unknown disturbances, of which the effects appear as time-varying parameters in the design model. For the synthesis of a tracking controller, a method combining the input-output linearization of a time-variant system with the parameter estimation is proposed. The parameter estimation method provides parameter estimates such that the estimated outputs asymptotically follow the measured outputs in a specified way. Since other unknown external disturbances or uncertainties can be lumped into existing parameters or considered as another separate parameters, the method is useful in practices exposed to diverse uncertainties and disturbances, and the designed controller becomes robust. And the design procedure and setting of tuning parameters are simple and clear due to the resulted linear design equations. The performances and the effectiveness of the proposed method are demonstrated via simulation studies.

Errors of MODIS product of Gross Primary Production by using Data Assimilation Office Meteorological Data (MODIS 총일차생산성 산출물의 오차요인 분석: 입력기상자료의 영향)

  • Kang Sinkyu;Kim Youngil;Kim Youngjin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.171-183
    • /
    • 2005
  • In order to monitor the global terrestrial carbon cycle, NASA (National Aeronautics and Space Administration) provides 8-day GPP images by use of satellite remote-sensing reflectance data from MODIS (Moderate Resolution Imaging Spectroradiometer) at l-km nadir spatial resolution since December, 1999. MODIS GPP algorithm adopts DAO (Data Assimilation Office) meteorological data to calculate daily GPP. By evaluating reliability of DAO data with respect to surface weather station data, we examined the effect of errors from DAO data on MODIS GPP estimation in the Korean Peninsula from 2001 to 2003. Our analyses showed that DAO data underestimated daily average temperature, daily minimum temperature, and daily vapor pressure deficity (VPD), but overestimated daily shortwave radiation during the study period. Each meteorological variable resulted in different spatial patterns of error distribution across the Korean Peninsula. In MODIS GPP estimation, DAO data resulted in overestimation of GPP by $25\%$ for all biome types but up to $40\%$ for forest biomes, the major biome type in the Korean Peninsula. MODIS GPP was more sensitive to errors in solar radiation and VPD than in temperatures. Our results indicate that more reliable gridded meteorological data than DAO data are necessary for satisfactory estimation of MODIS GPP in the Korean Peninsula.

Modeling and Experimental Verification of ANN Based Online Stator Resistance Estimation in DTC-IM Drive

  • Reza, C.M.F.S.;Islam, Didarul;Mekhilef, Saad
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.550-558
    • /
    • 2014
  • Direct Torque controlled induction motor (DTC-IM) drives use stator resistance of the motor for stator flux estimation. So, stator resistance estimation properly is very important for a stable and effective operation of the induction motor. Stator resistance variations because of changing in temperature make DTC operation difficult mainly at low speed. A method based on artificial neural network (ANN) to estimate the stator resistance online of IM for DTC drive is modeled and verified in this paper. To train the neural network a back propagation algorithm is used. Weight adjustment of neural network is done by back propagating the error signal between measured and estimated stator current. An extensive simulation has been carried out in MATLAB/SIMULINK to prove the efficacy of the proposed stator resistance estimator. The simulation & experimental result reveals that proposed method is able to obtain precise torque and flux control at low speed.

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives

  • Won, Tae-Hyun;Lee, Man-Hyung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.125-132
    • /
    • 2002
  • PMSMS (permanent magnet synchronous motors) are widely used in industrial applications and home appliances because of their high torque to inertia ratio, superior power density, and high efficiency. For high performance control, accurate informations about the rotor position is essential. Sensorless algorithms have lately been studied extensively due to the high cost of position sensors and their low reliability in harsh environments. A novel position sensorless speed control for PMSMs uses indirect flux estimation and is presented in this paper. Rotor position and angular velocity are estimated by the proposed indirect flux estimation. Linkage flux and magnetic field flux are calculated by the voltage equations and the measured phase current without any integration. Instead of linkage flux calculation with integral operation, indirect flux and differential magnetic field are used for the estimation of rotor position. A proper rejection technique fur current noise effect in the calculation of differential linkage flux is introduced. The proposed indirect flux detecting method is free from the integral rounding error and linkage flux drift problem, because differential linkage flux can be calculated without any integral operation. Furthermore, electrical parameters of the PMSM can be measured by the proposed TCM (time compression method) for soft starting and precise estimation of rotor position. The position estimator uses accurate electrical parameters that are obtained from the proposed TCM at starting strategy. In the operating region, a proper compensation method fur temperature effect can compensate fir the estimation error from the variation of electrical parameters. The proposed novel position sensorless speed control scheme is verified by the experimental results.

Estimation of Fine-Scale Daily Temperature with 30 m-Resolution Using PRISM (PRISM을 이용한 30 m 해상도의 상세 일별 기온 추정)

  • Ahn, Joong-Bae;Hur, Jina;Lim, A-Young
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • This study estimates and evaluates the daily January temperature from 2003 to 2012 with 30 m-resolution over South Korea, using a modified Parameter-elevation Regression on Independent Slopes Model (K-PRISM). Several factors in K-PRISM are also adjusted to 30 m grid spacing and daily time scales. The performance of K-PRISM is validated in terms of bias, root mean square error (RMSE), and correlation coefficient (Corr), and is then compared with that of inverse distance weighting (IDW) and hypsometric methods (HYPS). In estimating the temperature over Jeju island, K-PRISM has the lowest bias (-0.85) and RMSE (1.22), and the highest Corr (0.79) among the three methods. It captures the daily variation of observation, but tends to underestimate due to a high-discrepancy in mean altitudes between the observation stations and grid points of the 30 m topography. The temperature over South Korea derived from K-PRISM represents a detailed spatial pattern of the observed temperature, but generally tends to underestimate with a mean bias of -0.45. In bias terms, the estimation ability of K-PRISM differs between grid points, implying that care should be taken when dealing with poor skill area. The study results demonstrate that K-PRISM can reasonably estimate 30 m-resolution temperature over South Korea, and reflect topographically diverse signals with detailed structure features.

Infrared Estimation of Canopy Temperature as Crop Water Stress Indicator

  • Kim, Minyoung;Kim, Seounghee;Kim, Youngjin;Choi, Yonghun;Seo, Myungchul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.499-504
    • /
    • 2015
  • Decision making by farmers regarding irrigation is critical for crop production. Therefore, the precision irrigation technique is very important to improve crop quality and yield. Recently, much attention has been given to remote sensing of crop canopy temperature as a crop water-stress indicator, because it is a scientifically based and easily applicable method even at field scales. This study monitored a series of time-variant canopy temperature of cucumber under three different irrigation treatments: under-irrigation (control), optimal-irrigation, and over-irrigation. The difference between canopy temperature ($T_c$) and air temperature ($T_a$), $T_c-T_a$, was calculated as an indicator of cucumber water stress. Vapor pressure deficit (VPD) was evaluated to define water stress on the basis of the temperature difference between leaf and air. The values of $T_c-T_a$ was negatively related to VPD; further, cucumber growth in the under- and over-irrigated fields showed water stress, in contrast to that grown in the optimally irrigated field. Thus, thermal infrared measurements could be useful for evaluating crop water status and play an important role in irrigation scheduling of agricultural crops.

A Study for Estimation of the Surface Temperature Rise Using the FVM and Semi-Infinite Solid Analysis (FVM과 반무한체 해석을 이용한 표면온도예측에 관한 연구)

  • 김태완;이상돈;조용주
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.389-395
    • /
    • 2002
  • The surface temperature at the interface of bodies in a sliding contact is one of the most important factors influencing the behavior of machine components. The calculation of the surface temperature at a sliding contact interface has been an interesting and important subject for tribologist. Temperature analyses were usually performed under the consideration contacted two bodies as semi-infinite. But the analysis was difficulty in being applied to finite body and considering the boundary condition. In this study, contact temperature rise of two finite bodies and surfaces due to frictional heating under the rectangular and the circular sliding contact is calculated. Heat partition factor is calculated using semi-infinite solid analysis and the temperature of the finite bodies is calculated using FVM. It will be shown that Most frictional heat in the fore part of contact region for sliding direction is conducted into body that has a moving heat source and the site of the maximum temperature rise moves to the opposite direction of sliding during sliding.

Estimation of Thermal Behavior for the Machine Origin of Machine Tools using GMOH Methodology (GMOH 기법에 의한 공작기계 원점의 열적거동 예측)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.213-218
    • /
    • 1997
  • Thermal deformation of machine origin of machine tools due to internal and external heat sources has been the most important problem to fabricate products with higher accuracy and performance. In order to solve this problem, GMDH models were constructed to estimate thermal deformation of machine origin for a vertical machining ceneter through measurement of temperature data of specific points on the machine tool. These models are nonlinear equations with high-order polynomials and implemented in a multilayered perceptron type network structure. Input variables and orders are automatically selected by correlation and optimization procedure. Sensors with small influence are deleted automatically in this algorithm. It was shown that the points of temperature measurement can be reduced without sacrificing the estimation accuracy of $\pm$5${\mu}{\textrm}{m}$. From the experimental result, it was confirmed that GMDH methodology was superior to least square models to estimate the thermal behavior of machine tools.

  • PDF

A Relationship Between Restraint Effect of Weldment and Crack Initiation Characteristics (용접구조물의 구속효과와 균열발생특성간 상관관계)

  • 이제명;백점기;윤동렬
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.14-20
    • /
    • 2003
  • In this paper, a practical design criteria for judgement of crack occurrence in weldments is presented as a function of typical welding parameters, such as diffusible hydrogen, restraint intensity, and preheating temperature. The elastic analyses using the finite element techniques are employed in order to quantify the restraint intensities, numerically. Systematic experiments are also conducted in order to investigate the propensity of crack to typical welding parameters. The results of numerical estimation using the proposed method for the experimental specimens show the usefulness as a practical tool in welding induced crack problems with extensive uncertainties. Systematic experiments are also conducted in order to investigate the propensity of crack to typical welding parameters. The results of numerical estimation using the proposed method for the experimental specimens show the usefulness as a practical tool in welding induced crack problems with extensive uncertainties.