• Title/Summary/Keyword: temperature estimation

Search Result 1,651, Processing Time 0.031 seconds

Studies on the Estimation of Theromodynamic Properties for the Non-Azeotropic Refrigerant Mixtures (혼합냉매의 열역학적 물성치 추산에 관한 연구)

  • 김민수;김동섭;노승탁;김욱중;윤재호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1337-1348
    • /
    • 1990
  • Estimations of the thermodynamic properties are made for the selected binary non-azeotropic refrigerant mixtures including R13B1/R114, R22/R114, R12/R114, R152a/R114, R13B1/R152a and R13B1/R12 using the Peng-Robinson equation of state and mixing rules. In this study, we find that the binary interaction coefficients for the above mixtures have an effect upon the vapor-liquid equilibria and the thermodynamic properties. As the binary interaction coefficient becomes larger, the deviation from the idealized model, say, Raoult`s rule, is obvious. A correlation is proposed to relate the binary interaction coefficient to the difference between the dipole moments op each pure refrigerant. Vapor-liquid equilibrium are also accurately estimated using the binary interaction coefficient. Pressure-enthalpy and temperature-entropy relations are plotted for a certain composition ratio of each refrigerant mixture. Results show that the estimating method in this study can be applied to the investigation of the thermodynamic properties for the binary non-azeotropic refrigerant mixtures.

Quantitative Microbial Risk Assessment of Clostridium perfringens on Ham and Sausage Products in Korea (햄 및 소시지류에서의 Clostridium perfringens에 대한 정량적 미생물 위해평가)

  • Ko, Eun-Kyung;Moon, Jin-San;Wee, Sung-Hwan;Bahk, Gyung-Jin
    • Food Science of Animal Resources
    • /
    • v.32 no.1
    • /
    • pp.118-124
    • /
    • 2012
  • This study was conducted for quantitative microbial risk assessment (QMRA) of Clostridium perfringens with consumption on ham and sausage products in Korea, according to Codex guidelines. Frame-work model as product-retail-consumption pathway composed with initial contamination level, the time and temperature in distributions, and consumption data sets for ham and sausage products and also used the published predictive growth and dose-response models for Cl. perfringens. The simulation model and formulas with Microsoft@ Excel spreadsheet program using these data sets was developed and simulated with @RISK. The probability of foodborne disease by Cl. perfringens with consumption of the ham and sausage products per person per day was estimated as $3.97{\times}10^{-11}{\pm}1.80{\times}10^{-9}$. There were also noted that limitations in this study and suggestion for development of QMRA in the future in Korea.

Semi-numerical Study on the Flame Tilt Equation due to Wind on the Surface Fire in Forest Fire (산불 지표화에서의 바람에 의한 화염각 변화 산정식 도출에 관한 준-수치해석 연구)

  • Kim, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.90-95
    • /
    • 2009
  • The wind is very important factor in forest fire spread. Flame spread has a change through wind pattern change in forest fire. In order to analyze the forest fire flame spread rate, change of flame tilt depending on wind may be considering first. This is be cause the flame spread rate varies by the flame tilt changed due to transfer of heat. Especially, as wind speed grow, flame gets closer to surface, heat transfer ratio increase, virgin fuel bed reaches ignition temperature more rapidly, and flame moves faster. This study deduces, through experiment and physical figure analysis, relations on the change behavior of flame tilt due to wind. The value of flame tilt angle calculated from the equation and the experiment value showed average error angle of $3.3^{\circ}$, which is relatively smaller than results of previous studies that used other coefficient. Froude number coefficient A can be calculated in the method provided in this research for estimation of flame tilt angle of virgin fuel bed with varying thermal properties. The research finding is expected to be applied to future studies on flame spread through numerical analysis of heat transfer.

Effects of Superheat and Coating Layer on Interfacial Heat Transfer Coefficient between Copper Mold and Aluminum Melt during Solidification (응고중 구리 주형과 알루미늄 용탕의 계면열전달계수에 미치는 용탕과열도와 도형재의 영향)

  • Kim, Hee-Soo;Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.5
    • /
    • pp.281-289
    • /
    • 2004
  • The present study focused on the estimation of the interfacial heat transfer coefficient as a function of the surface temperature of the aluminum casting at the mold/casting interface to investigate the effects of superheat and coating layer. The casting experiments of aluminum into a cylindrical copper mold were systematically conducted to obtain the thermal history during solidification. The thermal history recorded by four thermocouples embedded both in the mold and the casting was used to solve the inverse heat conduction problem using Beck's method. The effects of superheat and coating on the interfacial heat transfer coefficient in the liquid state, during the solidification, and in the solid state were comparatively discussed. In the liquid state, the interfacial heat transfer coefficient is thought to be affected by the roughness of the mold, the wettability of the casting on the mold surface, and the thermophysical properties of the coating layer. When the solidification begins, the air gap forms between the casting and the mold, and the interfacial heat transfer coefficient becomes a function of the air gap as well as surface roughness and the superheat. In the solid phase, it depends only upon the thermal conductivity and the thickness of the air gap. The coating layer reduces seriously the interfacial heat transfer coefficient in the liquid state and during the solidification.

Faded Color Correction using Classification Map in LCybCrg Color Space (LCybCrg 색 공간에서 분류맵을 이용한 바랜 색 보정)

  • Kyung, Wang-Jun;Kim, Dae-Chul;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.1-7
    • /
    • 2012
  • Generally, correction methods for faded images use illuminant estimation algorithms, such as the gray world assumption and white patch Retinex methods, as the phenomenon of color fading is regarded as an illuminant effect. However, this induces inaccurate faded color correction, as images fade at different rates according to the ink property, temperature, humidity, and illuminant. Therefore, this paper presents a color correction method for faded images using classification in LCybCrg color space. The input faded image is first separated according to the chromaticity based on LCybCrg opponent color space. The faded color correction is then performed based on the gray world assumption in RGB color space. Thereafter, weights calculated from CybCrg values are applied to reduce contour artifacts. As a result, the proposed method provides better color correction for faded images than previous methods.

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DEVELOPMENT OF A COMPACT DIAGNOSTIC CORONAGRAPH FOR THE ISS

  • Cho, K.S.;Bong, S.C.;Choi, S.;Yang, H.;Kim, J.;Baek, J.H.;Park, J.;Lim, E.K.;Kim, R.S.;Kim, S.;Kim, Y.H.;Park, Y.D.;Clarke, S.W.;Davila, J.M.;Gopalswamy, N.;Nakariakov, V.M.;Li, B.;Pinto, R.F.
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.5
    • /
    • pp.139-149
    • /
    • 2017
  • The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administration (NASA) and to install it on the International Space Station (ISS). The coronagraph is an externally occulted one-stage coronagraph with a field of view from 3 to 15 solar radii. The observation wavelength is approximately 400 nm, where strong Fraunhofer absorption lines from the photosphere experience thermal broadening and Doppler shift through scattering by coronal electrons. Photometric filter observations around this band enable the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with a high time cadence (<12 min) of corona images used to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in August 2017 with the filter system and to perform a stratospheric balloon experiment in 2019 with the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g., coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.

Quantitative Estimation of Joint Spacing for Concrete Slab to Prevent Cracking of Drying Shrinkage (건조수축에 따른 균열 방지를 위한 콘크리트 슬래브의 정량적 줄눈 간격 산정)

  • Lee, Su-Jin;Lee, Hoi-Keun;Lee, Seung-Hoon;Won, Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.289-294
    • /
    • 2011
  • The installation of joint is to prevent random cracking due to drying shrinkage stress of concrete slab. However contraction joint spacing is empirically implemented into slab constructions without detail calculation based on quantitative criteria. In this study, shrinkage strain of concrete due to concrete shrinkage stress was measured to suggest joint spacing based on the study results. The test environmental conditions were applied temperature of $15^{\circ}C$ and relative humidity of 60%. The design compressive strength used was 30 MPa and 40 MPa, which are currently used in concrete slab designs. The drying shrinkage test result was applied to drying shrinkage models (ACI 209R, CEB MC 90, B3, GL 2000 and Sakata). The results showed that the most appropriate model was ACI 209R model. Based on the research findings, quantitative contraction joint spacing locations were calculated.

자기폭풍예보모델을 이용한 우주환경예보

  • 안병호
    • Information and Communications Magazine
    • /
    • v.15 no.9
    • /
    • pp.97-106
    • /
    • 1998
  • It is crucial to predict the variabilities of the near-earth space environment associated with the solar activity, which cause enormous socio-economic impacts on mankind. The geomagnetic storm prediction scheme adopted in this study is designed to predict such variabilities in terms of the geomagnetic indices, AE and Dst, the cross-polar cap potential difference, the energy dissipation rate over the polar ionosphere and associated temperature increase in the thermosphere. The prediction code consists of two parts; prediction of the solar wind and interplanetary magnetic field based upon actual flare observations and estimation of various electrodynamic quantities mentioned above from the solar wind-magnetosphere coupling function 'epsilon' which is derivable through the predicted solar wind parameters. As a test run, the magnetic storm that occurred in early November, 1993, is simulated and the results are compared with the solar wind and the interplanetary magnetic field measured by the Japanese satellite, Geotail, and the geomagnetic indices obtained from ground magnetic observatories. Although numerous aspects of the code are to be further improved, the comparison between the simulated results and the actual measurements encourages us to use this prediction scheme as the first appoximation in forecasting the disturbances of the near-earth space environment associated with solar flares.

  • PDF

A Fundamental Study on Biogas from Municipal Solid Waste (도시(都市) 폐기물(廢棄物)로부터 Biogas 생산(生産)에 관한 기초적(基礎的) 연구(研究))

  • Choi, Eui So;Lee, Jung Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.31-40
    • /
    • 1987
  • To evaluate the fundamental factors in the recovery of biogas from the landfills composed of about 40% of volatile solids, the experiments for the samples from the operating landfill site as well as from the laboratory-scale lysimeter were undertaken. In the test of landfills, the change of moisture content, the content of volatile solids (VS), the ratio of saccharide to ligin(Y) and the estimation of landfills reclaimed and the correlationship between VS and Y were investigated. During the experiments with laboratory-lysimeter, temperature, pH, gas production rate, the composition of gas were measured. The mathematical model derived from the the rate coefficient of gas production(k) were proposed from the results of this investigation. Furthermore, the proposed mathematical model from this study was verified with the obtained values from experiments.

  • PDF

The Suitability of Toughened Glass Stem Insulator for Korea High Speed Catenary System (고속전차선로 유리애자 현장 적합성 기반 구축 연구)

  • Lee, Gi-Chun;Jeon, Yong-Joo;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.243-248
    • /
    • 2009
  • The operation of KTX in Korea has launched since 2004, which brought about a great change in railroad industry. We have acquired lots of great know-hows, especially in railroad construction and operation field. Therefore, we have been building up numerous operation skills until now. However, it was necessary to investigate some of the equipment based on our own environment because the high speed train system were totally imported. In case of Toughened Glass Stem Insulator, it was totally new type in domestic. This paper introduces estimation method and result in three different field aspect, such as an electrical field, a physical field, and environmental circumstances. First, in case of an electrical field, amplitude and a number of time for switching surge voltage data were collected. Second, in case of a physical field, amplitude and trend of vibration in to the insulator were examined. Finally, in case of environmental circumstances, flying possibility of gravel and ice clod were investigated. Also shrink and expend characteristic according to temperature were reviewed. Through this basic data, suitability for Toughened Glass Stem Insulator using in domestic high speed railway have been accumulated and estimated.