• 제목/요약/키워드: temperature elasticity

검색결과 330건 처리시간 0.024초

양생온도변화에 따른 콘크리트의 재료역학적 특성 (Mechanical Properties of Concrete with Different Curing Temperatures)

  • 김진근;한상훈;양은익;송영철;방기성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.42-47
    • /
    • 1998
  • Experimental investigation was undertaken to determine early-age strength development and the relationships between the mechanical properties of type I, V and V/fly ash cement concrete with different curing temperature. The tests for mechanical properties, i.e., compressive strength, splitting tensile strength and modulus of elasticity were carried out for type, I, V and V with 15% replacement with fly ash cement concrete. For this purpose 480 concrete cylinders cured at isothermal conditions of 10, 23, 35 and 5$0^{\circ}C$ were tested at ages of 1, 3, 7 and 28days. According to the experiments, the concrete subjected to high temperature at early age got greater strength at early age, however eventually lower strength at late age. The derived relationships between compressive strength and splitting tensile strength and elastic modulus of elasticity appeared to be identical for all types of cement.

  • PDF

Thermo-mechanical vibration analysis of nonlocal flexoelectric/piezoelectric beams incorporating surface effects

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.435-445
    • /
    • 2018
  • This paper is concerned with thermo-mechanical vibration behavior of flexoelectric/piezoelectric nanobeams under uniform and linear temperature distributions. Flexoelectric/piezoelectric nanobeams have higher natural frequencies compared to conventional piezoelectric ones, especially at lower thicknesses. Both nonlocal and surface effects are considered in the analysis of flexoelectric/piezoelectric nanobeams for the first time. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying a Galerkin-based solution. Comparison study is also performed to verify the present formulation with those of previous data. Numerical results are presented to investigate the influences of the flexoelectricity, nonlocal parameter, surface elasticity, temperature rise, beam thickness and various boundary conditions on the vibration frequencies of thermally affected flexoelectric/piezoelectric nanobeam.

Development of a Chip Bonding Technology for Plastic Film LCDs

  • Park, S.K.;Han, J.I.;Kim, W.K.;Kwak, M.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.89-90
    • /
    • 2000
  • A new technology realizing interconnection between Plastic Film LCDs panel and a driving circuit was developed under the processing condition of low temperature and pressure with ACFs developed for Plastic Film LCDs. The conduction failure of interconnection of the two resulted from elasticity, low thermal resistance and high thermal expansion of plastic substrates. Conductive particles with elasticity similar to the plastic substrate did not damaged a ITO electrode on plastic substrates, and low temperature and pressure process also did not deform the surface of plastic substrates. As a result highly reliable interconnection with minimum contact resistance was accomplished.

  • PDF

A numerical and computer simulation for dynamic stability analysis of 3-unknown graded porous nanoplates using a Chebyshev-Ritz-Bolotin method

  • Wei, Dong
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.379-386
    • /
    • 2021
  • A numerical and computer simulation for dynamic stability analysis of graded porous nanoplates has been provided using a Chebyshev-Ritz-Bolotin approach. The nanoplate has been formulated according to the nonlocal elasticity and a 3-unkown plate model capturing neutral surface location. All of material properties are assumed to be dependent of porosity factor which determines the amount or volume of pores. The nano-size plate has also been assumed to be under temperature and moisture variation. It will be shown that stability boundaries of the nanoplate are dependent on static and dynamical load factors, porosity factor, temperature variation and nonlocal parameter.

Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation

  • Ebrahimi, Farzad;Ehyaei, Javad;Babaei, Ramin
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.245-261
    • /
    • 2016
  • Thermo-mechanical buckling problem of functionally graded (FG) nanoplates supported by Pasternak elastic foundation subjected to linearly/non-linearly varying loadings is analyzed via the nonlocal elasticity theory. Two opposite edges of the nanoplate are subjected to the linear and nonlinear varying normal stresses. Elastic properties of nanoplate change in spatial coordinate based on a power-law form. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanoplate. The equations of motion for an embedded FG nanoplate are derived by using Hamilton principle and Eringen's nonlocal elasticity theory. Navier's method is presented to explore the influences of elastic foundation parameters, various thermal environments, small scale parameter, material composition and the plate geometrical parameters on buckling characteristics of the FG nanoplate. According to the numerical results, it is revealed that the proposed modeling can provide accurate results of the FG nanoplates as compared some cases in the literature. Numerical examples show that the buckling characteristics of the FG nanoplate are related to the material composition, temperature distribution, elastic foundation parameters, nonlocality effects and the different loading conditions.

Effect of Phenyl Vinyl Methyl Silicone (PVMQ) on Low Temperature Sealing Performance of Fluorosilicone Composites

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yun, Yu-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.209-216
    • /
    • 2021
  • In this study, we observed the mechanical properties, thermal stability, and low temperature sealing performance of fluorosilicone elastic composites. When the blend ratio of Phenyl vinyl methyl silicone (PVMQ) was increased, the tensile strength, modulus at 100%, and compression set were decreased. The thermal stability of fluorosilicone elastic composites showed a similar tendency. These were caused by poorer green strength of PVMQ than Fluorosilicone rubber (FVMQ). The change in the tensile strength and elongation at -40℃ showed a decreasing tendency with increasing PVMQ blend ratio. By increasing the PVMQ blend ratio, low-temperature performance was improved. The Dynamic mechanical analysis (DMA) results showed that Tg was decreased and low-temperature performance was improved with increasing PVMQ blend ratio. However tanδ was decreased becaused of the poor green strength and elasticity of PVMQ. From a hysteresis loss at -40℃, the hysteresis loss value was increased and fluorosilicone elastic composites showed the decreasing tendency of elasticity with increasing PVMQ blend ratio. From the TR test, TR10 was decreased with increasing PVMQ blend ratio. FS-4 (45% PVMQ blended composites) showed a TR10 of -68.0℃ that was 5℃ lower than that of FS-1 (100% FVMQ). The gas leakage temperature was decreased with increasing PVMQ blend ratio. The gas leakage temperature of FS-4 was -69.2℃ that was 5℃ lower than that of FS-1. Caused by the polymer chain started to transfer from a glassy state to a rubbery state and had a mobility of chain under Tg, the gas leakage temperature showed a lower value than Tg. The sealing performance at low temperature was dominated by Tg that directly affected the mobility of the polymer chain.

Polycaprolactone-폴리아미드 블록공중합체/Poly(vinyl chloride) 블렌드의 상용성과 기계적 성질 (Miscibility and Mechanical Properties of Polycaprolactone-polyamide Block Copolymer/Poly(vinyl chloride) Blend)

  • 안소봉;이하용;정한모
    • 폴리머
    • /
    • 제24권1호
    • /
    • pp.128-132
    • /
    • 2000
  • Polycaprolactone (PCL) 블록의 함량이 62.7 wt%인 PCL-폴리아미드 블록공중합체와 poly(vinyl chloride) (PVC)의 상용거동을 시차주사열량계로 열적 성질을 관찰하여 조사하고, 블렌드물의 인장물성을 측정하였다. PCL과 PVC 세그먼트는 상용성을 가졌으며, PVC의 함량이 많은 경우 PCL의 결정화가 방해받아 PCL과 PVC 세그먼트로 구성된 비결정성 균일상이 형성됨을 알 수 있었다. PCL/PVC 균일 비결정상과 폴리아미드의 결정상이 병존하는 경우 균일 비결정상의 유리전이온도와 결정상의 녹는점 사이의 온도 영역에서 블렌드물은 고무탄성을 가졌다.

  • PDF

Effect of Sintering Temperature on the Grain Size and Mechanical Properties of Al2O3-SiC Nanocomposites

  • Moradkhani, Alireza;Baharvandi, Hamidreza;Naserifar, Ali
    • 한국세라믹학회지
    • /
    • 제56권3호
    • /
    • pp.256-268
    • /
    • 2019
  • In this research, some mechanical properties of Al2O3-based composites containing nanoSiC and nanoMgO additives, including elasticity modulus, hardness, and fracture toughness, have been evaluated. Micron-sized Al2O3 powders containing 0.08 wt.% nanoMgO particles have been mixed with different volume fractions of nanoSiC particles (2.5 to 15 vol.%). Untreated samples have been sintered by using hot-press technique at temperatures of 1600 to 1750℃. The results show significant increases in the mechanical characteristics with increases in the sintering temperature and amount of nanoSiC particles, with the result that the elasticity modulus, hardness, and fracture toughness were obtained as 426 GPa, 21 GPa, and 4.5 MPa.m1/2, respectively.

Stresses in FGM pressure tubes under non-uniform temperature distribution

  • Eraslan, Ahmet N.
    • Structural Engineering and Mechanics
    • /
    • 제26권4호
    • /
    • pp.393-408
    • /
    • 2007
  • The effects of material nonhomogeneity and nonisothermal conditions on the stress response of pressurized tubes are assessed by virtue of a computational model. The modulus of elasticity, the Poisson's ratio, the yield strength, and the coefficient of thermal expansion, are assumed to vary nonlinearly in the tube. A logarithmic temperature distribution within the tube is proposed. Under these conditions, it is shown that the stress states and the magnitudes of response variables are affected significantly by both the material nonhomogeneity and the existence of the radial temperature gradient.

제2인산(第二燐酸) 암모늄에 의(依)한 합판(合板)의 내화처리(耐火處理)(II) - 열판온도(熱板溫度)가 처리합판(處理合板)의 곡강도(曲强度)에 미치는 영향(影響) - (Fire Retardant Treatment to the Plywood with Di-ammonium Phosphate [(NH4)2HPO4] (II) - Effect of Platen Temperature on Bending Strength of Treated Plywoods -)

  • 정우양;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제12권2호
    • /
    • pp.3-9
    • /
    • 1984
  • This study was carried out to examine the practicality of DAP[$(NH_4)_2HPO_4$] as fire retardant for plywood by static bending test the redried plywoods which had been soaked in 20% $(NH_4)_2HPO_4$ solution. Being hot/cold soaked in the solution for 3/3, 6/3, 9/3 and 12/3 hours and redried by cyclic press-drying method at the platen temp. of 130, 145, 100 and $175^{\circ}C$, the treated plywoods were tested to offer the mechanical data, that is, $S_{pl}$(stress at proportional limit), MOE(modulus of elasticity), MOR(modulus of rupture) and $W_{pl}$(work per unit volume to proportional limit ) in flexure. The results obtained were summarized as follows. 1. $S_{pl}$ of fire retardant treated plywoods ("FRP" would be used hereinafter) decreased as the platen temperature increased, but it was superior to that of non-treated plywoods(Control) at $160^{\circ}C$ or higher. 2. MOE of FRP decreased roughly with the increase of temperature, hut this tendency was not constant. And the value of FRP was higher than that of Control even at $175^{\circ}C$. 3. MOR of FRP showed same temperature-dependent tendency as MOE, but it was influenced more sensitively at the higher temperature. 4. $W_{pl}$ of FRP also decreased gradually with the increase of platen temperature and the value in DAP 9/3 treatment was Jess than 70% of control plywoods. 5. In view of redrying time and mechanical properties, the most reasonable platen temperature for DAP treated FRP was $160^{\circ}C$ in this study.

  • PDF