• Title/Summary/Keyword: temperature and humidity

Search Result 4,301, Processing Time 0.037 seconds

The effect of temperature and relative humidity on concrete slab specimens with impressed current cathodic protection system

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.260-265
    • /
    • 2013
  • Impressed current cathodic protection (ICCP) system is one of the most promising corrosion protection methods. The Effect of ICCP system can be changed at diverse conditions. Particularly, temperature and relative humidity plays a crucial role in CP (Cathodic Protection) effect. Thus, in this study, the influence of temperature and relative humidity on concrete specimens was investigated. Specimens were concrete slab type with a base of $400mm{\times}400mm$ and height of 70mm. To enhance the effect of CP system, seawater was used as an electrolyte. Used anode for ICCP system was mixed metal oxide (MMO) titanium. Test factors were natural potential, CP potential, CP current, and 4-hour depolarization potential. From this study, it could be confirm that CP potential and current were highly influenced by temperature and relative humidity.

Effect of Relative Humidity and Temperature on the Compression Strength of Corrugated Boxes on Distribution Channel (유통중 온습도 변화에 따른 골판지 상자의 압축강도에 대한 연구)

  • 이명훈;김종경
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.2
    • /
    • pp.33-38
    • /
    • 2003
  • In order to design the high strength corrugated fiberboard containers for agricultural products that can be used for the cold chain system, a large number of individual boxes were placed in various humidity environments at two different temperature of 5 and $20^{\circ}C$. The results indicated that temperature changes do not effect on physical strength of corrugated fiberboard containers as much as humidity changes did. The main conclusion from this study was that compression strength of corrugated fiberboard containers dropped significantly at high humidity condition, but the rates varied depending on the number of walls, temperature, and perimeter of containers. The packaging designer must consider the corrugated fiberboard boxes are also greatly affected by dimensional variations such as the length versus width ratio. Based on this study, water-resistant board would not be necessary if the ambient relative humidity does not reach to a critical point, 85 percent in the cold chain system. However, the designer must count for the unexpected fluctuation of rotative humidity resulting in severe loss of the compression strength of corrugated fiberboard container.

Implications of Temperature and Humidity on the Moulting Patterns and Moulting Survival in the Silkworm, Bombyx mori L.

  • Lakshminarayana, P.;Naik, S.Sanker;Reddy, N.Sivarami
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.1
    • /
    • pp.21-25
    • /
    • 2003
  • The implications of temperature $(25, 30 and 35{\times}1^{\circ}C)$ and relative humidity $(60, 70 and 80{\times}2%)$ on the moulting pattern, moulting duration and moulting survival were studied in the silkworm, Bombyx mori L. Larvae of two pure silkworm breeds, Pure Mysore (PM) and NB$_4$D$_2$and their hybrid, $PM{\times}NB_{4} D_{2}$ were reared under experimental conditions under natural day photoperiodic (LD 12:12) condition. Two developmental marker events in the fourth moulting, settling for moult (SM) and completion of moult (CM) occurred at or around the middle of the photophase. The computed mean vector (equation omitted), based on the circular statistics also confirmed the above. Temperature and humidity did not alter the moulting rhythmicity much. However, extreme temperature and humidity conditions reduced moulting survival in PM and $PM {\times}NB_{4} D_{2}$. Further, moulting survival reduced below the economic level in $NB_{4} D_{2}$. The temperature and humidity together seem to exert synergic impact on the moulting survival of the silkworm Bombyx mori, at least in $NB_{4} D_{2}$.

Implications of Temperature and Humidity on Pupation Patterns in the Silkworm, Bombyx mori L.

  • Lakshminarayana, P.;Naik, S.Sankar;Reddy, N.Sivarami
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.1
    • /
    • pp.67-71
    • /
    • 2002
  • The implications of temperature (25,30 and 35$^{\circ}C$) and relative humidity (60, 70 and 80%) on the pupation patterns were studied in the silkworm, Bombyx mori L. Larvae of two pure silkworm breeds, Pure Mysore (PM) and NB4D2 and their hybrid, PM ${\times}4 NB4D2 were reared under experimental conditions under natural day photoperiodic (LD 12: 12) condition. The three developmental marker events viz., larval ripening, pharate pupal formation and pupal formation occurred at or around the beginning of the photo-phase. The computed of mean vector (equation omitted), based on the circular statistics, also confirmed the above. However, the length of mean vector, r and the mean vector angular variance, s varied according to temperature and humidity conditions imposed; the variations being non-significant. Extreme temperature and humidity conditions, however, resulted in reduction in pupation rate (%) for PM and PM ${\times}4 NB4D2. On the other hand, in NB4D2 pupation percentage reduced below the economic level. The temperature and humidity together seems to exert synergic impact on the pupation rate at least in the silkworm Bombyx mori, L.

Effects of Temperature and Humidity on NDIR CO2 Gas Sensor (비분산 적외선 이산화탄소 가스센서 특성의 온·습도 영향)

  • Kim, JinHo;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.179-185
    • /
    • 2017
  • This article describes the characteristics of nondispersive infrared carbon dioxide gas sensor according to the temperatures and humidifies. In this researches, a thermopile sensor that included application-specific integrated circuit (ASIC) was used and the White-cell structure was implemented as an optical waveguide. The developed sensor modules were installed in gas chamber and then the temperature of gas chamber has been increased from 283 K to 313 K with 10K temperature step. In order to analyze the effects of humidity levels, the relative humidity levels were changed from 30 to 80%R.H. with small humidifier. Then, the characteristics of sensor modules were acquired with the increment of carbon dioxide concentrations from 0 to 2,000 ppm. When the initial voltages of sensors were compared before and after humidifying the chamber at constant temperature, the decrements of the output voltages of sensors are like these: 9mV (reference infrared sensor), 41 mV (carbon dioxide sensor), 2 mV (temperature sensor). With the increment of ambient temperature, the averaged output voltage of carbon dioxide sensor was increased 19 mV, however, when the humidity level was increased, it was decreased 14mV. Based upon the experimental results, the humidity effect could be alleviated by the increment of temperature, so the effects of humidity and temperature could be only compensated by the ambient temperature itself. The estimated carbon dioxide concentrations showed 10% large errors below 200 ppm, however, the errors of the estimations of carbon dioxide concentrations were less than ${\pm}5%$ from 400 to 2,000 ppm.

A Case Study of Innovative Engineering Education System by Idea Factory (Development of Temperature-Humidity Control Device for Fiber Storage on Composites) (Idea Factory를 통한 공학교육 혁신 활동 사례 연구 (복합재 섬유 보관용 온·습도 조절 장치 개발))

  • Park, Soo-Jeong;Kim, Yun-Hae
    • Journal of Engineering Education Research
    • /
    • v.20 no.1
    • /
    • pp.63-68
    • /
    • 2017
  • This research is as a case study of innovative engineering education system through idea factory of korea maritime and ocean university and deals with development of temperature-humidity control device (THCD) for fiber storage on composites in viewpoint of problem solving method. Fiber reinforced plastic (FRP) includes many variables on the composite manufacturing process. Above all, the interfacial adhesion between the fiber and the matrix acts as an important thing that decided mechanical property of the FRP, and also it is profoundly linked to external temperature and relative humidity. High void fraction leads to a result in interlaminar fracture. Therefore, in this research, to establish correlation between fiber reinforcement and fiber storage conditions of temperature and relative humidity we developed a THCD for fiber reinforcement. To evaluate performance of the THCD, glass fiber reinforced plastic (GFRP) is made under the extreme conditions each temperature $34^{\circ}C$, relative humidity 98 % and it can be said that there are the change of mechanical properties according to fiber storage conditions. As a result, the THCD showed sufficient possible application for understanding and applied research of composites field in material engineering. Also, we could check that the necessity of introduction of innovative system such as idea factory existed.

Fuzzy-based Fan Control using Arduino's Temperature and Humidity for Comfortable Indoor Environment (쾌적한 실내 환경을 조성하기 위한 아두이노의 온도와 습도를 이용한 퍼지 기반의 팬 제어 연구)

  • Kim, Jaeheoung;Kim, Jaewoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.389-392
    • /
    • 2018
  • In this paper, we try to make a pleasant environment by adjusting the fan moving by temperature and humidity in hot and humid room. To do this, we propose a fuzzy-based fan control using room temperature and humidity, collect environment data such as indoor temperature and humidity using Arduino, transmit it to Bluetooth communication, and adjust the operation time of fan according to fuzzy logic. To do this, connect a temperature and humidity sensor to the Arduino hardware, write the source code using the Arduino program on your computer, and code it in Arduino. Then, the environmental data obtained after collecting environmental data such as humidity from Arduino is transferred to the Arduino Control Module through Bluetooth communication. We use the fuzzy logic to control the time of fan operation according to environmental data such as temperature and humidity. At the end of this process, the fan will operate according to temperature and humidity to create a pleasant environment. Through this study, Arduino was simpler and easier to use than I thought, and I think it's easy to use and can be used in real life by using Arduino hardware, data acquisition, fuzzy logic, and control.

  • PDF

Feed Bin impact of ventilation on the temperature and humidity management (피드빈 온습도 관리에 미치는 환기 시스템의 영향)

  • Kim, Jeong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6432-6438
    • /
    • 2015
  • In this paper, we analyzed by measuring the temperature and humidity inside of the Feed Bin, NV, EA, SA, $SA{\cdot}EA$, by applying the ventilation system offers an efficient management of the operating direction. In the period the target is not input and feed period to make a change in the Feed Bin within the temperature and humidity of the outdoor air temperature and relative humidity compared to accept the ventilation system. Internal temperature over a comparison of the external temperature and the relative humidity is $SA{\cdot}EA$, internal humidity can verify the efficiency and NV, SA ventilation applied.

Temperature and Humidity Aging Characteristics of Composite Solid Propellant (혼합형 고체 추진제 온$cdot$습도 노화 특성)

  • Lee Kyung-Joo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.46-53
    • /
    • 2005
  • We have analyzed the temperature and humidity aging test results of a composite solid propellant. The temperature aging test was performed to evaluate the storage life of a propellant, while the humidity aging test could provide the hygroscopicity of Ammonium Perchlorate(AP) exposed to .elative humidity (RH) 10, 30, $50\%$ environment. A specimen was used in the temperature test, and a block of propellant from the actual motor was used in the humidity test. We report that the 4-month storing at 60 degree is equivalent to the 10-year 60 degree condition. The composite solid propellant with HTPB binder showed signs of hardening with time lapse but the effect of humidity up to RH $50\%$ was not noticeable.

Evaluation of Temperature and Humidity of a Thermo-Hygrostat of PET/CT Equipment using a Temperature and Humidity Sensor(BME 280) (온·습도센서(BME 280 센서)를 이용한 PET/CT 장비의 항온 항습기 온·습도 평가)

  • Ryu, Chan-Ju;Kim, Jeong-A;Kim, Jun-Su;Yun, Geun-Yeong;Heo, Seung-Hui;Hong, Seong-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • PET(Positron Emission Tomography) devices are used as PET/CT or PET/MRI devices fused with the devices of CT or MRI for obtaining anatomical information. Therefore, the devices are constructed in circular ring-type structure whose length of gantry(the main part of filming) becomes wider and the interior depth becomes longer in comparison to other common medical equipments. scintillator, one of the components in PET devices, is inside the gantry, and as it is consisted of crystal which is sensitive to the change of temperature and humidity, large temperature change can cause the scintillator to be damaged. Though scintillator located inside the gantry maintains temperature and humidity with a thermo-hygrostat, changes in temperature and humidity are expected due to structural reasons. The output value was measured by dividing the inside of the gantry of the PET/CT device into six zones, each of which an Adafruit BME 280 temperature and humidity sensor was placed at. A thermo-hygrostat keeps the temperature and humidity constant in the PET/CT room. As the measured value of temperature and humidity of the sensor was obtained, the measured value of temperature and humidity appeared in the thermohygrostat was taken at the same time. Comparing the average measured values of temperature and humidity measured at each six zones with the average values of the thermo-hygrostat results in a difference of 2.71℃ in temperature and 21.5% in humidity. The measured temperature and humidity of PET Gantry is out of domestic quality control range. According to the results of the study, if there is continuous change in temperature and humidity in the future, the aging of the scintillator mounted in the PET Gantry is expected to be aging, so it is necessary to find a way to properly maintain the temperature and humidity inside the Gantry structure.