• Title/Summary/Keyword: temperate phage

Search Result 21, Processing Time 0.031 seconds

Killing Activity and Molecular Properties of Bacteriophage Sigma FA1 of Bacillus circulans (Bacteriophage Sigma FA1의 치사활성과 구조특성)

  • 김철호;김동수
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.553-560
    • /
    • 1991
  • In the previous paper (10). a new temperate phage, Sigma FA1 had been isolated from B. circulans. Sigma FA1 had an icosahedral head with a diameter of about 70 nm, and a tail about 15 nm long, and beared a circularly permuted, linear duplex DNA. Signla FA1 killed sensitive cells by a single-hit process. Phage DNA injected into the cell immediately after infection was degraded slowly. Our results indicate that the killing action of Sigma FA1 is different from the phenomenon of abortive infection and suggest that the killing might be caused by a proteinaceous component of Sigma FA1.

  • PDF

Classification and Characterization of Bacteriophages of Lactobacillus casei -Analysis of Restriction Patterns of Phage DNA- (Lactobacillus casei bacteriophage의 분류 및 특성에 관한 연구 - Phage DNA의 제한효소 절편 비교 분석-)

  • 김영창;강현삼
    • Korean Journal of Microbiology
    • /
    • v.23 no.2
    • /
    • pp.115-121
    • /
    • 1985
  • Five representative virulent phages (J1, TK93, K1, PD5, and CP1) and one temperate phage (.phi.1043) of Lactobacillus casei were compared to each other by analyzing the agarose gel electrophoretic patterns of restriction enzyme-digested phage DNAs. Nucleic acids of all the tested phages were double stranded DNA. DNAs of J1, TK93, K1, and ${\phi}$ 1043 phages had a size of about 42kb, but the size of PD5 and CP1 DNAs was avout 140kb. J1, TK93, K1, PD5, CP1, and ${\phi}$ 1043 DNAs were digested to 13, 13, 11, 14, 14, and 12 fragments by EcoR1, respectively, and showed its characteristec restriction patterns. Cohesive ends were present in J1, TK93, and ${\phi}$ 1043, but were absent in K1, PD5, and CP1. Restriction maps of J1 and TK93 DNAs showed nearly complete homology and their evolutionary relationship based upon the restriction analysis was discussed.

  • PDF

Studies on the Bacteriophages of Brevibacterium lactofermentum (L-글루타민산 생산균 Brevibacterium lactofermentum의 Bacteriophag에 관한 연구)

  • 이태우
    • Korean Journal of Microbiology
    • /
    • v.17 no.3
    • /
    • pp.97-130
    • /
    • 1979
  • Many industrial processes those employ bacteria are subjected to phage infestations. In L-glutamic acid fermentions using acetic acid, the phage infestations of the organisms have been recently recognized. In efforts to elucidate the sources of phage contamination involved in the abnormal fermentation, a series of study was conducted to isolate the phages both from the contents of abnormally fermented tanks and the soil or sewage samples from the surroundings of a fermentation factory, to define major charateristics of the phage isolates, and finally to determine the correlation between the phage isolates and temperate phages originating from the miscellaneous bacterial species isolated from the soil or sewage samples. The results are summarized as follows; 1) All phages were isolated from the irregular fermentation tanks and soil or sewage samples, and they were designated as phage PR-1, PR-2, PR-3, PR-4, PR-5, PR-6, and PR-7, in the order of isolation. These PR-series phages were proved to be highly specific for the variant strains of Br. lactofermentum only, namely, phage PR-1 and PR-2 for Br. lactofermentum No. 468-5 and phage PR-3~PR-7 for Br. lactofemrentum No. 2256. By cross-neutralization test, the 7 phagescould be subdivided into 3 groups, i. e., phage PR-I and PR-2 the first, phage PR-3, PR-4, PR-5, PR-6 the second, and the phage PR-7 the third. 2) The 7 phages were virulent under the experimental conditions. They produced plaques with clear and relatively sharp margins without distinct halo. The mean sizes of plaques were 1.5mm in diameter for phage PR-1 and PR-2, and 1. Omm for phages PR-3~PR-7. Double layer technique modified by Hongo and described by Adams, was applied to assay of the PR-series phages. The factors influencing the plaques were as follows;young age cells of host bacteria cultured for 3-6 hours represented the largest number and size, optimum was pH 7.0, incubation temperature was $30^{\circ}C$, and agar concentration and amount of overlayer medium were 0.6% and 0.2ml, respectively. 3) PR-series phages were stable in 0.05M tris buffer and 0.1M ammonium acetate buffer solution. The addition of $5{\times}10^{-3}M$ magnesium ion effectively increased the stability. Thermostability experiments indicated that PR-series phages were stable at the teinperture between $50^{\circ}{\sim}55^{\circ}C$ in nutrient medium, $45^{\circ}{\sim}50^{\circ}C$ in buffer solution. However, the phages mere completely inactivated at 603C and 65$^{\circ}$C within 10 minutes. The phages were stable at the range of pH6~9 in nutrient medium and of pH 8-9 in buffer solution, respectively. Exposure of the phages to UV for 25, 60 and 100 seconds resulted in the complete loss of infectivily, respectively. 4) Electron microscopy showed that PR-series phage particles exhibited rather similar morphology, differing in the size All of PR-series phages had a multilateral head and had a simple long tiil about three to five times long as compared with head. By the size, phage PR-1 and PR-2, PR-3, PR-4, PR-5, and PR-6 and PR-7 were classified into same groups, respectively. The head and tail size of phage PR-1, PR-5, PR-5(T) and PR-7 were 85nm, 74nm and 235nm and 350mm, and 72nm and 210nm, respectively. 5) Nucleic acids of PR-series phages were double stranded DNA. The G+C contents of phage PR-1, PR-5 and PR-7 were 56.1, 52.9 and 53.7, respectively. The values of G+C contents derived from the $T_m$ were in agreement with the chemically determined values. 6) PR-series phages effectively adsorbed on their host bacteria at the rate of more than 90% during 5 min. K value for phage PR-1, PR-5 and PR-7 were calculated to be $6{\times}10^9 ml$ per minute, respectiveky. The pH of the medium did effect adsorption rate, but both temperature and age of host cells did not. Generally, optimum adsorption condition of phages seemed to be almost same as optimum growth conditions of host bacteria. 7) In one-step growth experiments, the latent periods at $30^{\circ}C$ for PR-1, and PR-7 were about 70, 50 and 55 min, respectively. The corresponding average burst size was 200, 70 and 90, respectively. Lpsis period according to the multiplicity of infection and a phage series. In case of m. o. i. 100, strain No. 2256 (PR-5) and No. 468-5(PR-1) failed to grow and turbidity decreased after 50 and 70min, respectively. 8) In the lysate of a plaque purified phage PR-5 infected bacteria, there observed 2 types ofphage particles, i. e., phage PR-5 and PR-5 (T) of similar morphology but differing at the length of phage tail, and phage tail like particles. The phage taillike particles could be divided into 4 types by the length. Induction experiments of Br. lactofermentum with UV irradiation, mitomycin C or bacitracin treatment produced neither phage PR-5 (T) or phage tail-like particles. 9) No lysis occured when the growth of 7 strains of miscellaneous bacteria, isolated from soil and sewage samples, were inoculated with either phage PR-5 (T) or phage tail-like particles the inoculation of phage PR-5 pellet resulted in the growth inhibition of the orgainsms in the spot test. The lysates obtained from 3 miscellaneous soil derived bacteria following mitomycin C treatment the growth of Br. lactofermentum, but did not lyze the bacterium.

  • PDF

Characterization of Prophange Cured Strain Derivative from Lactobacillus casei YIT 9018 (Lcatobacillus casei YIT 9018로 부터 분리한 Prophage Cured Strain의 특성)

  • Lee, Jeong-Jun;Oh, Tae-Kwang;Chang, Hyo-Ihl;Baek, Young-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.467-476
    • /
    • 1994
  • Lactobacillus casei HY 2782, prophage cured strain was characterized to be stable as much as L casei YIT 9018, parent strain. By southern hybridization, it was confirmed that the temperate phage was incorporated in chromosomal DNA of L. casei YIT 9018 as a prophage. It was also proved that the prophage was cured from chromosomal DNA of L casei HY 2782. The growth rate, lactic acid producing ability, carbohydrates fermentation, and enzymatic activity of L. casei HY 2782 were found to be similar to those of L. casei YIT 9018. When L casei HY 2782 was used as a host, the multiplicity of infection (M.O.I.) of the temperate phage for L. casei HY 2782 was 1.0~5.0. Restriction enzyme analysis of pLC90 plasmid from L. casei HY 2782 was shown that the size was an approximately 68.22 kb. The plasmid profiles, genomic DNA patterns, and cellular fatty acids composition of L. casei HY 2782 were similar to those of L casei YIT 9018. And the major fatty acids composition of these strains were C$_{14;0}$,C$_{16;1}$, C$_{16;0}$, C$_{18;1}$ and C$_{19;cyclo-}$ 10 sets of arbitrary primer in the PCR were screened to find differentiation against two strains of L. casei. Among them, b$_{5}-1/17-1 primer was produced an approximately 1.3 kb DNA band of only L casei YIT 9018. And b$_{5}-2/17-2 primer was produced an approximately 1.0 kb DNA band of only L casei HY 2782.

  • PDF

Moderately thermostable phage Φ11 Cro repressor has novel DNA-binding capacity and physicochemical properties

  • Das, Malabika;Ganguly, Tridib;Bandhu, Amitava;Mondal, Rajkrishna;Chanda, Palas K.;Jana, Biswanath;Sau, Subrata
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.160-165
    • /
    • 2009
  • The temperate Staphylococcus aureus phage ${\Phi}11$ harbors cI and cro repressor genes similar to those of lambdoid phages. Using extremely pure ${\Phi}11$ Cro (the product of the ${\Phi}11$ cro gene) we demonstrated that this protein possesses a single domain structure, forms dimers in solution at micromolar concentrations and maintains a largely $\alpha$-helical structure even at $45^{\circ}C$. ${\Phi}11$ Cro was sensitive to thermolysin at temperatures ranging from $55-75^{\circ}C$ and began to aggregate at ${\sim}63^{\circ}C$, suggesting that the protein is moderately thermostable. Of the three homologous 15-bp operators (O1, O2, and O3) in the ${\Phi}11$ cI-cro intergenic region, ${\Phi}11$ Cro only binds efficiently to O3, which is located upstream of the cI gene. Our comparative analyses indicate that the DNA binding capacity, secondary structure and dimerization efficiency of thermostable ${\Phi}11$ Cro are distinct from those of P22 Cro and $\lambda$ Cro, the best characterized representatives of the two structurally different Cro families.

A Point Mutation at the C-Terminal Half of the Repressor of Temperate Mycobacteriophage L1 Affects Its Binding to the Operator DNA

  • Ganguly, Tridib;Chattoraj, Partho;Das, Malabika;Chanda, Palas K.;Mandal, Nitai.C.;Lee, Chia Y.;Sau, Subrata
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.709-714
    • /
    • 2004
  • The wild-type repressor CI of temperate mycobacteriophage L1 and the temperature-sensitive (ts) repressor CIts391 of a mutant L1 phage, L1cIts391, have been separately overexpressed in E. coli. Both these repressors were observed to specifically bind with the same cognate operator DNA. The operator-binding activity of CIts391 was shown to differ significantly than that of the CI at 32 to $42^{\circ}C$. While 40-95% operator-binding activity was shown to be retained at 35 to $42^{\circ}C$ in CI, more than 75% operator-binding activity was lost in CIts391 at 35 to $38^{\circ}C$, although the latter showed only 10% less binding compared to that of the former at $32^{\circ}C$. The CIts391 showed almost no binding at $42^{\circ}C$. An in vivo study showed that the CI repressor inhibited the growth of a clear plaque former mutant of the L1 phage more strongly than that of the CIts391 repressor at both 32 and $42^{\circ}C$. The half-life of the CIts391-operator complex was found to be about 8 times less than that of the CI-operator complex at $32^{\circ}C$. Interestingly, the repressor-operator complexes preformed at $0^{\circ}C$ have shown varying degrees of resistance to dissociation at the temperatures which inhibit the formation of these complexes are inhibited. The CI repressor, but not that of CIts391, regains most of the DNA-binding activity on cooling to $32^{\circ}C$ after preincubation at 42 to $52^{\circ}C$. All these data suggest that the 131st proline residue at the C-terminal half of CI, which changed to leucine in the CIts391, plays a crucial role in binding the L1 repressor to the cognate operator DNA, although the helix-turn-helix DNA-binding motif of the L1 repressor is located at its N-terminal end.

The G23 and G25 Genes of Temperate Mycobacteriophage L1 Are Essential for The Transcription of Its Late Genes

  • Datta, Hirock Jyoti;Mandal, Prajna;Bhattacharya, Rajat;Das, Niranjan;Sau, Subrata;Mandal, Nitai Chanda
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.156-162
    • /
    • 2007
  • Two lysis-defective but DNA synthesis non-defective temperature-sensitive (ts) mutants of mycobacteriophage L1, L1G23ts23 and L1G25ts889 were found to be defective also in phage-specific RNA synthesis in the late period of their growth at 42$^{\circ}C$each to the extent of 50% of that at 32$^{\circ}C$The double mutant, L1G23ts23G25ts889 showed the ts defect in phage RNA synthesis that was nearly additive of those shown individually by the two single-mutant parents. Both G23 and G25 were shown to start functioning sometimes between 30 and 45 min after infection but the former gene might be dispensable after 45 min, while the latter was not. Northern analysis also shows that at 42$^{\circ}C$>, L1G23ts23 affects RNA synthesis more strongly than L1G25ts889 from L1 DNA segments that serve as the template for late gene transcription. Among the 21 virion and 12 non-virion late proteins synthesized by L1, L1G23ts23 is defective in the synthesis of at least 9 virion and all of non-virion proteins at 42$^{\circ}C$>. In contrast, L1G25ts889 is completely defective in synthesis of all the 33 late proteins. Possible roles of G23 and G25 in the positive regulation of transcription of different sets of late genes of L1 have been discussed.

Cloning and Characterization of the Promoters of Temperate Mycobacteriophage L1

  • Chattopadhyay, Chandrani;Sau, Subrata;Mandal, Nitai C.
    • BMB Reports
    • /
    • v.36 no.6
    • /
    • pp.586-592
    • /
    • 2003
  • Four putative promoters of the temperate mycobacteriophage L1 were cloned by detecting the $\beta$-galactosidase reporter expression in E. coli transformants that carried L1 specific operon-fusion library. All of the four L1 promoters were also found to express differentially in the homologous environment of mycobacteria. Of the four promoters, two were suggested to be the putative early promoters of L1 since they express within 0 to 10 min of the initiation of the lytic growth of L1. One of the putative early promoters showed a relatively better and almost identical activity in both E. coli and M. smegmatis. By a sequence analysis, we suggest that the L1 insert that contained the stronger early promoter possibly carries two convergent E. coli $\sigma^{70}$-like L1 promoters, which are separated from each other by about 300 nucleotides. One of them is the early promoter of L1 as it showed a 100% similarity with the early $P_{left}$ promoter of the homoimmune phage L5. The second promoter, designated P4, was suggested for its appreciable level of reporter activity in the absence of the -10 element of the $P_{left}$ equivalent of L1. By analyzing most of the best characterized mycobacteriophages-specific promoters, including the L1 promoter P4, we suggest that both the -10 and -35 hexamers of the mycobacteriophage promoters are highly conserved and almost similar to the consensus -10 and -35 hexamers of the E. coli $\sigma^{70}$ promoters.

Cloning and Sequencing Analysis of the Repressor Gene of Temperate Mycobacteriophage L1

  • Sau, Subrata;Chattoraj, Partho;Ganguly, Tridib;Lee, Chia Yen;Mandal, Nitai Chandra
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.254-259
    • /
    • 2004
  • The wild-type and temperature-sensitive (ts) repressor genes were cloned from the temperate mycobacteriophage L1 and its mutant L1cIts391, respectively. A sequencing analysis revealed that the $131^{st}$ proline residue of the wild-type repressor was changed to leucine in the ts mutant repressor. The 100% identity that was discovered between the two DNA regions of phages L1 and L5, carrying the same sets of genes including their repressor genes, strengthened the speculation that L1 is a minor variant of phage L5 or vice versa. A comparative analysis of the repressor proteins of different mycobacteriophages suggests that the mycobacteriophage-specific repressor proteins constitute a new family of repressors, which were possibly evolved from a common ancestor. Alignment of the mycobacteriophage-specific repressor proteins showed at least 7 blocks (designated I-VII) that carried 3-8 identical amino acid residues. The amino acid residues of blocks V, VI, and some residues downstream to block VI are crucial for the function of the L1 (or L5) repressor. Blocks I and II possibly form the turn and helix 2 regions of the HTH motif of the repressor. Block IV in the L1 repressor is part of the most charged region encompassing amino acid residues 72-92, which flanks the putative N-terminal basic (residues 1-71) and C-terminal acidic (residues 93-183) domains of L1 repressor.

Development of Host-Vector Systems for Lactic Acid Bacteria (유산균의 Host-Vector System 개발)

  • 윤성식;김창민
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • Lactic acid bacteria (LAB) are widely used for various food fermentation. With the recent advances in modern biotechnology, a variety of bio-products with the high economic values have been produced using microorganisms. For molecular cloning and expression studies on the gene of interest, E. coli has been widely used mainly because vector systems are fully developed. Most plasmid vectors currently used for E, coli carry antibiotic-resistant markers. As it is generally believed that the antibiotic resistance markers are potentially transferred to other bacteria, application of the plasmid vectors carrying antibiotic resistance genes as selection markers should be avoided, especially for human consump-tion. By contrast, as LAB have some desirable traits such that the they are GRAS(generally recognized as safe), able to secrete gene products out of cell, and their low protease activities, they are regarded as an ideal organism for the genetic manipulation, including cloning and expression of homologous and heterologous genes. However, the vec-tor systems established for LAB are stil insufficient to over-produce gene products, stably, limiting the use of these organisms for industrial applications. For a past decade, the two popular plasmid vectors, pAM$\beta$1 of Streptococcus faecalis and pGK12 theB. subtilis-E. coli shuttle vector derived from pWV01 of Lactococcus lactis ssp. cremoris wg 2, were most widely used to construct efficient chimeric vectors to be stably maintained in many industrial strains of LAB. Currently, non-antibiotic markers such as nisin resistance($Nis^{r}$ ) are explored for selecting recombi-nant clone. In addition, a gene encoding S-layer protein, slp/A, on bacterial cell wall was successfully recombined with the proper LAB vectors LAB vectors for excretion of the heterologous gene product from LAB Many food-grade host vec-tor systems were successfully developed, which allowed stable integration of multiple plasmid copies in the vec-mosome of LAB. More recently, an integration vector system based on the site-specific integration apparatus of temperate lactococcal bacteriophage, containing the integrase gene(int) and phage attachment site(attP), was pub-lished. In conclusion, when various vector system, which are maintain stably and expressed strongly in LAB, are developed, lost of such food products as enzymes, pharmaceuticals, bioactive food ingredients for human consump-tion would be produced at a full scale in LAB.

  • PDF