Development of Host-Vector Systems for Lactic Acid Bacteria

유산균의 Host-Vector System 개발

  • 윤성식 (연세대학교 문리대학 생물자원공학과) ;
  • 김창민 (식품의약품안정청 식품평가부)
  • Published : 2001.03.01

Abstract

Lactic acid bacteria (LAB) are widely used for various food fermentation. With the recent advances in modern biotechnology, a variety of bio-products with the high economic values have been produced using microorganisms. For molecular cloning and expression studies on the gene of interest, E. coli has been widely used mainly because vector systems are fully developed. Most plasmid vectors currently used for E, coli carry antibiotic-resistant markers. As it is generally believed that the antibiotic resistance markers are potentially transferred to other bacteria, application of the plasmid vectors carrying antibiotic resistance genes as selection markers should be avoided, especially for human consump-tion. By contrast, as LAB have some desirable traits such that the they are GRAS(generally recognized as safe), able to secrete gene products out of cell, and their low protease activities, they are regarded as an ideal organism for the genetic manipulation, including cloning and expression of homologous and heterologous genes. However, the vec-tor systems established for LAB are stil insufficient to over-produce gene products, stably, limiting the use of these organisms for industrial applications. For a past decade, the two popular plasmid vectors, pAM$\beta$1 of Streptococcus faecalis and pGK12 theB. subtilis-E. coli shuttle vector derived from pWV01 of Lactococcus lactis ssp. cremoris wg 2, were most widely used to construct efficient chimeric vectors to be stably maintained in many industrial strains of LAB. Currently, non-antibiotic markers such as nisin resistance($Nis^{r}$ ) are explored for selecting recombi-nant clone. In addition, a gene encoding S-layer protein, slp/A, on bacterial cell wall was successfully recombined with the proper LAB vectors LAB vectors for excretion of the heterologous gene product from LAB Many food-grade host vec-tor systems were successfully developed, which allowed stable integration of multiple plasmid copies in the vec-mosome of LAB. More recently, an integration vector system based on the site-specific integration apparatus of temperate lactococcal bacteriophage, containing the integrase gene(int) and phage attachment site(attP), was pub-lished. In conclusion, when various vector system, which are maintain stably and expressed strongly in LAB, are developed, lost of such food products as enzymes, pharmaceuticals, bioactive food ingredients for human consump-tion would be produced at a full scale in LAB.

Keywords

References

  1. Plasmid v.22 A novel plasmid vectior, pLPI for E. coli and S. thermophilus Bringel, F.;L. Frey;J. C. Hubert
  2. FEMS Microbiol. Lett. v.44 Transformation of L. casei by electroporation Chassy, B.;J. Flickinger
  3. Curr. Microbiol., v.40 Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus gasseri and Lactobacillus johnsonii and characterization of the genetically modified probiotic lactobacilli Cho, J. S;Y. J. Choi;D. K. Chung
  4. J. Bacteriol. v.117 Characterization of three plasmid deoxyribonucleic acid molecules in a strain of Streptococcus faecalis;identification of a plasmid determining erythromycin resistance Clewell, D. B.;Y. Yagi;G. M. Dunny;S. K. Schultz
  5. Microbiol. Rev. v.45 Plasmids, drug resistance, and genetransfer in the genus Streptococcus. Clewell, D. B.
  6. Curr. Microbiol. v.39 Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria Coderre, P. E.;G. A. Somkuti
  7. Appl. Environ. Microbiol. v.49 Streptococcus-E. coli shuttle vector pSA3 and its use in the cloning of streptococcal genes Dao, M. L.;J. J. Ferretti
  8. Appl. Environ. Microbiol. v.55 Plasmid transformation by electroporation of Leu. paramesenteroides and its use in molecular cloning David, S.;G. Simons;W. M. de Vos
  9. Antonie van Leeuwenhook v.55 Genomic organiation of lactic acid bacteria Davidson, B. E.;N. Kordias;M. Dobos;A. J. Hillier
  10. Lett. Appl. Microbiol. v.11 High efficiency electroporation of Lactococcus lactis subsp. lactis LM0230 with plasmid pGB301 Dornan, S.;M. A. Collins
  11. Environ. Microbiol. v.65 Purification, characterization, gene cloning, sequencing, and over-expression of aminopeptidase N from Streptococcus thermophilus A Dunny, G. M.;L. N. Lee;D. J. LeBlanc;C. Fredric;G. C. Michael;M. Jacques
  12. monocytogenes plasmids. Infect Jmmun v.44 Introduction of pAM1 into Listeria monocytogenes by conjugation and homology between native L Framm, R. K.;D. J. Hinrichs;M. F. Thomashow
  13. J. Dairy Sci. v.74 Development and application of pFM011 as a possible food-grade cloning vector Froseth, B. R.;L . L. Mckay
  14. Biosci. Biotechnol. Biochem. v.56 Establishment of a host-vector system in Lactobacillus helveticus with a galactosidase activity as a selection marker Hashiba, H.;R. Takiguchi;K. Jyoho;K. Aoyama
  15. Appl. Environ. Microbiol. v.62 Characterization and sequence analysis of a stable cryptic plasmid from enterrococcus faecium 226 and development of a stable cloning vector Herb, A. W.;B. Mary;O. G. Kevin;W. E. Sandine
  16. J. Dairy Sci. v.74 Transformation of dairy Leuconostoc using plasmid vector from Bacillis, Escherichia, and Lactococcus hosts Herb, A. W.;W. E. Sandine
  17. Appl. Environ. Microbiol v.55 The conjugative plasmid pTR2030 encodes two bacteriophage defense mechanisms in Lactococci, restriction modification(R+/M+) and abortive infection(Hsp+) Hill, C.;K. Pierce;T. Klaenhammer
  18. J. Dairy Sci. v.75 Deriving phage-insensitive Lactococci using a food-grade vector encoding phage and nisin resistance Hughes, B. F.;L. Mckay
  19. J. Dairy Sci. v.72 Bacteriophages of lactic acid bacteria Jarvis, A. W.
  20. J. Bacteriol. v.179 In vivo expression of the Lactobacillus brevis S-layer gene Kahala, M.;K. Savijoki;A. Palva
  21. Appl. Environ. Microbiol. v.51 The expression signals of the Lactobacillus brevis slpA gene direct efficient heterologous protein production in lactic acid bacteria Kahala, M.;A. Palva
  22. Appl. Environ. Microbiol. v.48 Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli Kok, J.;J. M. van der Vossen;G. Venema
  23. J. Bacteriol. v.157 Physical and genetic analysis of Streptococcal plasmid pAMβ1 and cloning of its replication region LeBlanc, D. J.;L. N. Lee
  24. Appl. Environ. Microbiol. v.55 Campbell like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis. subsp, Lactis Leenhouts, K. J.;J. Kok.;G. Venema
  25. Appl. Environ. Microbiol. v.57 Stability of integrated plasmids in the chromosome of Lactococcus lactis Leenhouts, K. J.;J. Kok;G. Venema
  26. J. Appl. Microbiol. Biotechnol. v.49 Construction of a food-grade multiple-copy integration system for Lactococcus lactis Leenhouts, K.;A. Bolhuis;G. Vencma;J. Kok
  27. Current Microbiol. v.33 Cloning vectors for Lactococci based on a plasmid encoding resistance to cadmium Lin, C.-Q.;V. Leelawacharamas;M. L. Harvey;N. W. Dunn
  28. Appl. Microbiol. Biotechnol. v.45 Construction of an integrative food-grade cloning vector for Lactobacillus acidophilus Lin, M.-Y.;S. Harlander;D. Savaiano
  29. Appl. Microbiol. Biotechnol. v.40 Construction of first-generation lactococcal integrative cloning vectors McIntyre, D. A.;S. K. Harlander
  30. Biochimie v.70 Strategies for the development of bacterial transformation system Mercenier, A.;B. M. Chassy
  31. J. Appl. Bacteriol. v.65 In vivo transfer of pAM1 from Lactobacillus reuteri to Enterococcus calis Morelli, L.;P. G. Serra;V. Bottanzzi
  32. Appl. Environ. Microbiol. v.64 Production of pediocin PA-1 by Lactococcus lactis using the lactococcin A secretory apparatus Nikky, H.;I. M. Maria;M. M. Jose;E. H. Pablo;J. G. Michael;M. R. Juan;M. D. Helen
  33. Appl. Environ. Microbiol. v.65 Enhanced production of pediocin PA-1 and coproduction of nisin and pediocin PA-1 by Lactococcus lactis Nikky, H.;I. M. Maria;M. M. Jose;E. H. Pablo;J. G. Michael;M. R. Juan;M. D. Helen
  34. Gene. v.137 High- and low copy-number Lactococcus shuttle vectors with features for clone screening O'Sullivan, D. J.;T. R. Klaenhammer
  35. Appl. Environ. Microbiol. v.62 Food-grade cloning and expression system for Lactococcus Lactis Platteeuw, C.;van Alen-Boergigter, I.;van Schalkwijk, S.;de Vos, W.
  36. J. Bacteriol. v.170 Host-vector system for intergration of recombinant DNA into chromosomes of transformable and nontransformable streptococci Pozzi, G.;R.A. Musmanno;E. A. Renzoni;M. R. Ogioni;M. G. Cusi
  37. J. Bacteriol. v.174 Site-specific integration of the temperate baceriophage adh into the Lactobacillus gasseri chromosome and molecular characterization of the phage(attP) and bacterial(attΒ) attachment sites Raya, R. R. C. Fremaux;G. L. de Antoni;T. R. Klaenhammer
  38. Ann. Inst. Paster. Microbiol. v.136B Conjugal transfer of plasmid-mediated antibiotic resistance from streptococci to Clostridium acetobutylicum Reysset, G.;M. Sebald
  39. J. Bacteriol. v.172 Characterization of insertion sequence IS946, an Iso-ISSI element, isolated from the conjugative lactococcal plasmid pTr2030 Romero, D. A.;T. R. Klaenhammer
  40. Gene v.186 High level heterologous protein production in Lactococcus and lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signal Savijoki, K.;M. Kahala;A. Palva
  41. Antimicrob. Agents Chemother. v.22 Conjugative transfer of R-plasmids from Streptococcus faecalis to Staphylococcus aureus Schaberg, D. R.;D. B. Clewell;L. Glatzer
  42. Bicochemie v.70 Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis Simon, D;A. Chopin
  43. J. Ind. Microbiol. v.1 Distribution and analysis of plasmids in Steptococcus thermophilus Somkuti, G. A.;D. H. Steinberg
  44. Appl. Microbiol. Biotechnol. v.50 Characterization of a novel Streptococcus thermophilus rolling-circle plasmid used for vector construction Solaiman, D. K.;G. A. Somkuti
  45. Appl Environ Microbiol. v.66 A food-grade cloning system for industrial strains of Lactococcus lactis Sorensen, K. I.;R. Larsen;A. Kibenchi;M. P. Junge;E. Johansen
  46. J. Bacteriol. v.170 Conjugative plasmid transfer from Enterococcus faecalis to E. Coil. Trieu-Cuot, P.;C. Carlier;P. Courvalin
  47. Appl. Environ. Microbiol. v.55 Construction of a lactococcal expression vector;expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis van de Guchte, M.;J. Kok;G. Venema
  48. FEMS Microbiol. Rev. v.8 Gene expression in Lactococcus lactis van de Guchte, M.;J. Kok; G. Venema
  49. The 9th international symposium on lactic acid bacteria and human health Improvement of lctic acid bacteria by genetic modification Vcnema, G.;K, Venema;J. Kok
  50. Appl. Environ. Microbiol. v.56 Isolation of a replication region of a large lactococcal plasmid and use in cloning of a nisin resistance determinant won Wright, A.;S. Wessels; S. Tynkkynen;M. Saarela
  51. Appl. Environ. Microbiol. v.62 Characterization and sequence analysis of a stable cryptic plasmid from entercoccus faecium 226 and development of a stable cloning vector Wycoff, H. A.;M Barnes;K. O. Gillies;W. E. Sandine