• Title/Summary/Keyword: tectonic landform

Search Result 10, Processing Time 0.025 seconds

A Study of Regional Geomorphology in the Chugaryeong Tectonic Valley, Central Korea (추가령 구조곡의 지역지형 연구)

  • Lee, Min-Boo;Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.4
    • /
    • pp.473-490
    • /
    • 2016
  • This study aims to analyze the regional geomorphology of the Chugaryeong Tectonic Valley which has been one of the most important areas for Korean geomorphological research. Though the Chugaryeong Tectonic Valley has been thought important for the tectonic settings and orographic processes in Korea, geomorphological and geological discussions still are sustaining for finding out evidences of the settings. The Chugaryeong valley region has many geomorphic themes such as tectonic structure, volcanics, river, mountain, terrace, lake and sediment layers. The research of the valley focuses on the comprehensive analysis of the previous references mainly including geomorphic naming, geomorphology and geology, and history of the study for estimating the origin of tectonic valley, formation of the lave plateau, change of river structure by dissection, restoration of the landform before lava eruption, and the processes and age dating of the various landforms. Conclusively, the Chugaryeong Tectonic Valley may be recognized as the linear region of the tectonic and volcanic landforms with other various applied geomorphic settings.

  • PDF

A Theoretical Study on the Landscape Development by Different Erosion Resistance Using a 2d Numerical Landscape Evolution Model (침식저항도 차이에 따른 지형발달 및 지형인자에 대한 연구 - 2차원 수치지형발달모형을 이용하여 -)

  • Kim, Dong-Eun
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.541-550
    • /
    • 2022
  • A pre-existing landform is created by weathering and erosion along the bedrock fault and the weak zone. A neotectonic landform is formed by neotectonic movements such as earthquakes, volcanoes, and Quaternary faults. It is difficult to clearly distinguish the landform in the actual field because the influence of the tectonic activity in the Korean Peninsula is relatively small, and the magnitude of surface processes (e.g., erosion and weathering) is intense. Thus, to better understand the impact of tectonic activity and distinguish between pre-existing landforms and neotectonic landforms, it is necessary to understand the development process of pre-existing landforms depending on the bedrock characteristics. This study used a two-dimensional numerical landscape evolution model (LEM) to study the spatio-temporal development of landscape according to the different erodibility under the same factors of climate and the uplift rate. We used hill-slope indices (i.e., relief, mean elevation, and slope) and channels (i.e., longitudinal profile, normalized channel steepness index, and stream order) to distinguish the difference according to different bedrocks. As a result of the analysis, the terrain with high erosion potential shows low mean elevation, gentle slope, low stream order, and channel steepness index. However, the value of the landscape with low erosion potential differs from that with high erodibility. In addition, a knickpoint came out at the boundary of the bedrock. When researching the actual topography, the location around the border of difference in bedrock has only been considered a pre-existing factor. This study suggested that differences in bedrock and various topographic indices should be comprehensively considered to classify pre-existing and active tectonic topography.

Influence of Tectonic Uplift on Longitudinal Profiles of Bedrock Rivers: Numerical Simulations (융기가 기반암 하상하천의 종단곡선에 미치는 영향에 대한 연구 -수리 모형을 통한 연구-)

  • Kim Jong Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.722-734
    • /
    • 2004
  • Longitudinal profiles of bedrock rivers play a fundamental role in landscape history by setting the boundary conditions for landform evolution. Longitudinal profiles are changed with climatic conditions, lithology and tectonic movements. Tectonic movement is an important factor controlling longitudinal profiles, especially in tectonically active area where uplift rates are regarded as a major factor controlling channel gradient. However study on bedrock channel has made little progress, because controls over bedrock river incision are yet to be clarified. Previous numerical simulations have used a simple diffusion model, which links together the overall processes of bedrock channel erosion as in other landform evolution models. In this study, previous bedrock incision models based on physical processes (especially abrasion) are reviewed and new modifications are introduced. Using newly formulated numerical model, the role of spatial pattern and intensity of tectonic uplift on changes in river longitudinal profile was simulated and discussed.

Geomorphological Development and Fault Activity of the Central-Southern Yangsan Fault (I): Developmental Characteristics and Distribution of the Quaternary Landforms (양산단층 중남부 구간의 지형 발달과 단층 운동 (I): 제4기 지형의 발달 특성 및 분포)

  • Hong, Yeong-Min;Oh, Jeong-Sik;Hong, Seong-Chan;Shin, Jae-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.67-81
    • /
    • 2021
  • Geomorphological development and distribution at the macro scale provide a clue to the geotectonic characteristics that have affected the geomorphological system. This is because the developmental characteristics and distribution of the landform at the macro scale remain spatial characteristics due to tectonic processes, such as fault activity. From the perspective of tectonic geomorphology, this study identified the developmental characteristics and distribution of the Quaternary landforms in central-southern Yangsan fault and discussed its relevance to fault activity. In this paper, we presented examples and results of morphotectonic analysis of the Yangsan fault, and will present the results of age dating, stratigraphic relationship of the Quaternary landforms, and calculation of cumulative slip rate in the next paper.

Tectonic Movement in the Korean Peninsula (I): The Spatial Distribution of Tectonic Movement Identified by Terrain Analyses (한반도의 지반운동 ( I ): DEM 분석을 통한 지반운동의 공간적 분포 규명)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.368-387
    • /
    • 2007
  • In order to explain geomorphological characteristics of the Korean Peninsula, it is necessary to understand the spatial distribution of tectonic movements and its causes. Even though geomorphological elements which might have been formed by tectonic movements(e.g. tilted overall landform, erosion surface, river terrace, marine terraces, etc.) have long been considered as main geomorphological research topics in Korea, the knowledge on the spatial distribution of tectonic movement is still limited. This research aims to identify the spatial distributions of tectonic movement via sequential analyses of Digital Elevation Model(DEM). This paper first developed a set of terrain analysis techniques derived from theoretical interrelationships between tectonic uplifts and landsurface denudation processes. The terrain analyses used in this research assume that elevations along major drainage basin divides might preserve original landsurfaces(psuedo-landsuface) that were formed by tectonic movement with relatively little influence by denudation processes. Psuedo-landsurfaces derived from a DEM show clear spatial distribution patterns with distinct directional alignments. Lines connecting psuedo-landsufaces in a certain direction are defined as psuedo-landsurface axes, which are again categorized into two groups: the first is uplift psuedo-landsurface axes that indicate the axis of landmass uplift; and the second is denudational psuedo-landsurface axes that cross step-shaped pusedo-landsurfaces formed via surface denudation. In total, 13 axes of pusedo-landsurface are identified in the Korean Peninsula, which show distinct direction, length, and relative uplift rate. Judging from the distribution of psudo-landsurfaces and their axes, it is concluded that the Korean Peninsula ran be divided into four tectonic regions, which are named as the Northern Tectonic Region, Center Tectonic Region, Southern Tectonic Region, and East Sea Tectonic Region, respectively. The Northern Tectonic Region had experienced a regional uplift centered at the Kaema plateau, and the rate of uplift gradually decreased toward southern, western and eastern directions. The Center Tectonic Region shows an arch-shaped uplift. Its uplift rate is the highest along the East Sea and the rate decreases towards the Yellow sea. The Southern Tectonic Region shows an asymmetric uplift centered a line connecting Dukyu and Jiri Mountains in the middle of the region. The eastern side of the Southern Regions shows higher uplift rate than that of the western side. The East Sea Tectonic Region includes south-eastern coastal area of the peninsula and Gilju-Myeongchun Jigudae, which shows relatively recent tectonic movements in Korea. Since this research visualizes the spatial heterogeneity of long-term tenonic movement in the Korean peninsula, this would provide valuable basic information on long-term and regional differences of geomorphological evolutionary processes and regional geomorphological differences of the Korean Peninsula.

Distribution of Fault-related Landforms and Lineaments Along the Ulsan Fault Zone (울산단층대 주변의 단층 지형 및 선구조 분포)

  • Lee, Gwang-Ryul;Park, Chung-Sun;Shin, Jae-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.89-103
    • /
    • 2018
  • This study presents results of analysis on fault-related landforms and the Quaternary fluvial landforms, which are important evidences for active faulting by identifying surface deformation, around the Ulsan Fault Zone. In addition, this study suggests lineament map and inferred active fault-line map based on analyzing linearity and continuity of these landforms and by compiling location information of existing active faults. We convince that quantitative tectonic-geomorphological analysis are an effective method for active faults tracking, in particular, considering the conditions of relatively low seismicity and surface ruptured-events in the Korean Peninsula compared to plate boundary active areas. However, research on active fault in South Korea is just an infant stage since the 1990s and requires accumulation of research achievements on development and application of various fault analysis techniques, analysing and standardizing linear structures.

Review on Marine Terraces of the East Sea Coast, South Korea : Gangreung - Busan (강릉-부산 간 동해안 해안단구 검토)

  • Choi, Sung-Ja
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.409-425
    • /
    • 2019
  • Marine terraces, a step-like landform, are important geologic markers that provide tectonic information during the Quaternary Period. Marine terraces are well developed along all coastlines(East, West, and South) of the Korean Peninsula, those along the East coastline are the most distinctive. The marine terraces of the East coastline are classified into 4-6 flights that are several meters or several tens of meters above the present sea level. It is believed that these terraces, except for the lowest one, were formed in the middle Pleistocene. In the base of the OSL age dating results and Blake excursion events of magnetostratigraphy, the $2^{nd}$ and $3^{rd}$ terraces are correlated to the last interglacial stage. Considering the marine terraces linked to a sea-level curve of the Pleistocene, it is thought that regional tectonic movements have uplifted the East coastal area since the middle Pleistocene. Besides, former shorelines of each terrace have varied elevations from Gangreung to Busan bay, which can be divided into four regions, namely, Gangreung-Yonghanri(I), Homikot-Najung(II), Najung-Bangeojin(III), and Waesung-Busan Bay(IV). The former shorelines of each terrace at both Gangreung-Yonghanri(I) and Najung-Bangeojin(III) are higher than those in the other two regions, due to block movements by regional faults such as the Ocheon Fault or its subsidiaries, the Gampo Lineament and Ulsan Fault. Uplift rate of the East coast ranges from 0.2 m/ky to 0.3 m/ky, but each region shows different uplift rate.

Cosmogenic Nuclides Dating of the Earth Surface: Focusing on Korean Cases (우주선유발 동위원소를 이용한 지표면의 연대측정: 국내 사례를 중심으로)

  • Seong, Yeong Bae;Yu, Byung Yong
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.261-272
    • /
    • 2014
  • Over the last three decades, advances in AMS (Accelerator Mass Spectrometry) and Noble Gas Mass Spectrometer make various application of terrestrial cosmogenic nuclides (CNs) to wide range of earth surface sciences possible. Dating techniques can be divided into three sub-approaches: simple surface exposure dating, depth-profile dating, and burial dating, depending on the condition of targeted surfaces. In terms of Korean landscape view, CNs dating can be applied to fluvial and marine terrace, alluvial fan, tectonic landform (fault scarp and faulted surfaces), debris landforms such as rock fall, talus, block field and stream, lacustrine and marine wave-cut platform, cave deposits, Pliocene basin fill and archaeological sites. In addition, in terms of lithology, the previous limit to quartz-rich rocks such as granite and gneiss can be expanded to volcanic and carbonate rocks with the help of recent advances in CNs analysis in those rocks.

Extraction of Lineament and Its Relationship with Fault Activation in the Gaeum Fault System (가음단층계의 선형구조 추출과 선형구조와 단층활동의 관련성)

  • Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.69-84
    • /
    • 2019
  • The purpose of this study is to extract lineaments in the southeastern part of the Gaeum Fault System, and to understand their characteristics and a relationship between them and fault activation. The lineaments were extracted using a multi-layered analysis based on a digital elevation model (5 m resolution), aerial photos, and satellite images. First-grade lineaments inferred as an high-activity along them were classified based on the displacement of the Quaternary deposits and the distribution of fault-related landforms. The results of classifying the first-grade lineaments were verified by fieldwork and electrical resistivity survey. In the study area of 510 km2, a total of 222 lineaments was identified, and their total length was 333.4 km. Six grade lineaments were identified, and their total length was 11.2 km. The lineaments showed high-density distribution in the region along the Geumcheon, Gaeum, Ubo fault, and a boundary of the Hwasan cauldron consisting the Gaeum Fault System. They generally have WNW-ESE trend, which is the same direction with the strike of Gaeum Fault System. Electrical resistivity survey was conducted on eight survey lines crossing the first-grade lineament. A low-resistivity zone, which is assumed to be a fault damage zone, has been identified across almost all survey lines (except for only one survey line). The visual (naked eyes) detecting of the lineament was evaluated to be less objectivity than the automatic extraction using the algorithm. However, the results of electrical resistivity survey showed that first-grade lineament extracted by visual detecting was 83% reliable for inferred fault detection. These results showed that objective visual detection results can be derived from multi-layered analysis based on tectonic geomorphology.

Paleozoic Strata in the Lankawi Geopark, Malaysia: Correlation with Paleozoic Strata in the Korean Peninsula (말레이시아 랑카위 지질공원의 고생대 퇴적층: 한반도 고생대 퇴적층과의 대비)

  • Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.417-427
    • /
    • 2010
  • The Lankawi archipelago is located in 30 km western offshore near the Thailand-Malaysia border in west coast of the Malay Peninsula and consists of 99 (+5) tropical islands, covering an area of about $479km^2$. Together with biodiversity in flora and fauna, the Lankawi archipelago displays also geodiversity that includes rock diversity, landform diversity, and fossil diversity. These biodiversity and geodiversity have led to the Lankawi islands as a newly emerging hub for ecotourism in Southeast Asia. As a result, the Lankawi islands have been designated the first Global Geopark in Southeast Asia by UNESCO since July 1st, 2007. The geodiversity of Lankawi Geopark today is a result of a very long depositional history under the various sedimentological regimes and paleoenvironments during the Paleozoic, followed by tectonic and magmatic activities until the early Mesozoic, and finally by surface processes that etched to the present beautiful landscape. Paleozoic strata exposed in the Lankawi Geopark are subdivided into four formations that include the Machinchang (Cambrian), Setul (Ordovician to Early Devonian), Singa (Late Devonian to Carboniferous), and Chuping (Permian) formations in ascending order. These strata are younging to the east, but they are truncated by the Kisap Thrust in the eastern part of the islands. Top-to-the-westward transportation of the Kisap Thrust has brought the older Setul Formation (and possibly Machinchang Formation) from the east to overlay the younger Chuping and Singa formations in the central axis of the Lankawi islands. Triassic Gunung Raya Granite intruded into these sedimentary strata, and turned them partially into various types of contact metamorphic rocks that locally contain tin mineral deposits. Since Triassic, not much geologic records are known for the Lankawi islands. Tropical weathering upon rocks of the Lankawi islands might have taken place since the Early Jurassic and continues until the present. This weathering process played a very important role in producing beautiful landscapes of the Lankawi islands today.