• Title/Summary/Keyword: technology-based business

Search Result 4,039, Processing Time 0.037 seconds

Development of Industrial Embedded System Platform (산업용 임베디드 시스템 플랫폼 개발)

  • Kim, Dae-Nam;Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.50-60
    • /
    • 2010
  • For the last half a century, the personal computer and software industries have been prosperous due to the incessant evolution of computer systems. In the 21st century, the embedded system market has greatly increased as the market shifted to the mobile gadget field. While a lot of multimedia gadgets such as mobile phone, navigation system, PMP, etc. are pouring into the market, most industrial control systems still rely on 8-bit micro-controllers and simple application software techniques. Unfortunately, the technological barrier which requires additional investment and higher quality manpower to overcome, and the business risks which come from the uncertainty of the market growth and the competitiveness of the resulting products have prevented the companies in the industry from taking advantage of such fancy technologies. However, high performance, low-power and low-cost hardware and software platforms will enable their high-technology products to be developed and recognized by potential clients in the future. This paper presents such a platform for industrial embedded systems. The platform was designed based on Telechips TCC8300 multimedia processor which embedded a variety of parallel hardware for the implementation of multimedia functions. And open-source Embedded Linux, TinyX and GTK+ are used for implementation of GUI to minimize technology costs. In order to estimate the expected performance and power consumption, the performance improvement and the power consumption due to each of enabled hardware sub-systems including YUV2RGB frame converter are measured. An analytic model was devised to check the feasibility of a new application and trade off its performance and power consumption. The validity of the model has been confirmed by implementing a real target system. The cost can be further mitigated by using the hardware parts which are being used for mass production products mostly in the cell-phone market.

An Analysis of IT Trends Using Tweet Data (트윗 데이터를 활용한 IT 트렌드 분석)

  • Yi, Jin Baek;Lee, Choong Kwon;Cha, Kyung Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.143-159
    • /
    • 2015
  • Predicting IT trends has been a long and important subject for information systems research. IT trend prediction makes it possible to acknowledge emerging eras of innovation and allocate budgets to prepare against rapidly changing technological trends. Towards the end of each year, various domestic and global organizations predict and announce IT trends for the following year. For example, Gartner Predicts 10 top IT trend during the next year, and these predictions affect IT and industry leaders and organization's basic assumptions about technology and the future of IT, but the accuracy of these reports are difficult to verify. Social media data can be useful tool to verify the accuracy. As social media services have gained in popularity, it is used in a variety of ways, from posting about personal daily life to keeping up to date with news and trends. In the recent years, rates of social media activity in Korea have reached unprecedented levels. Hundreds of millions of users now participate in online social networks and communicate with colleague and friends their opinions and thoughts. In particular, Twitter is currently the major micro blog service, it has an important function named 'tweets' which is to report their current thoughts and actions, comments on news and engage in discussions. For an analysis on IT trends, we chose Tweet data because not only it produces massive unstructured textual data in real time but also it serves as an influential channel for opinion leading on technology. Previous studies found that the tweet data provides useful information and detects the trend of society effectively, these studies also identifies that Twitter can track the issue faster than the other media, newspapers. Therefore, this study investigates how frequently the predicted IT trends for the following year announced by public organizations are mentioned on social network services like Twitter. IT trend predictions for 2013, announced near the end of 2012 from two domestic organizations, the National IT Industry Promotion Agency (NIPA) and the National Information Society Agency (NIA), were used as a basis for this research. The present study analyzes the Twitter data generated from Seoul (Korea) compared with the predictions of the two organizations to analyze the differences. Thus, Twitter data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. To overcome these challenges, we used SAS IRS (Information Retrieval Studio) developed by SAS to capture the trend in real-time processing big stream datasets of Twitter. The system offers a framework for crawling, normalizing, analyzing, indexing and searching tweet data. As a result, we have crawled the entire Twitter sphere in Seoul area and obtained 21,589 tweets in 2013 to review how frequently the IT trend topics announced by the two organizations were mentioned by the people in Seoul. The results shows that most IT trend predicted by NIPA and NIA were all frequently mentioned in Twitter except some topics such as 'new types of security threat', 'green IT', 'next generation semiconductor' since these topics non generalized compound words so they can be mentioned in Twitter with other words. To answer whether the IT trend tweets from Korea is related to the following year's IT trends in real world, we compared Twitter's trending topics with those in Nara Market, Korea's online e-Procurement system which is a nationwide web-based procurement system, dealing with whole procurement process of all public organizations in Korea. The correlation analysis show that Tweet frequencies on IT trending topics predicted by NIPA and NIA are significantly correlated with frequencies on IT topics mentioned in project announcements by Nara market in 2012 and 2013. The main contribution of our research can be found in the following aspects: i) the IT topic predictions announced by NIPA and NIA can provide an effective guideline to IT professionals and researchers in Korea who are looking for verified IT topic trends in the following topic, ii) researchers can use Twitter to get some useful ideas to detect and predict dynamic trends of technological and social issues.

Detection of Phantom Transaction using Data Mining: The Case of Agricultural Product Wholesale Market (데이터마이닝을 이용한 허위거래 예측 모형: 농산물 도매시장 사례)

  • Lee, Seon Ah;Chang, Namsik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.161-177
    • /
    • 2015
  • With the rapid evolution of technology, the size, number, and the type of databases has increased concomitantly, so data mining approaches face many challenging applications from databases. One such application is discovery of fraud patterns from agricultural product wholesale transaction instances. The agricultural product wholesale market in Korea is huge, and vast numbers of transactions have been made every day. The demand for agricultural products continues to grow, and the use of electronic auction systems raises the efficiency of operations of wholesale market. Certainly, the number of unusual transactions is also assumed to be increased in proportion to the trading amount, where an unusual transaction is often the first sign of fraud. However, it is very difficult to identify and detect these transactions and the corresponding fraud occurred in agricultural product wholesale market because the types of fraud are more intelligent than ever before. The fraud can be detected by verifying the overall transaction records manually, but it requires significant amount of human resources, and ultimately is not a practical approach. Frauds also can be revealed by victim's report or complaint. But there are usually no victims in the agricultural product wholesale frauds because they are committed by collusion of an auction company and an intermediary wholesaler. Nevertheless, it is required to monitor transaction records continuously and to make an effort to prevent any fraud, because the fraud not only disturbs the fair trade order of the market but also reduces the credibility of the market rapidly. Applying data mining to such an environment is very useful since it can discover unknown fraud patterns or features from a large volume of transaction data properly. The objective of this research is to empirically investigate the factors necessary to detect fraud transactions in an agricultural product wholesale market by developing a data mining based fraud detection model. One of major frauds is the phantom transaction, which is a colluding transaction by the seller(auction company or forwarder) and buyer(intermediary wholesaler) to commit the fraud transaction. They pretend to fulfill the transaction by recording false data in the online transaction processing system without actually selling products, and the seller receives money from the buyer. This leads to the overstatement of sales performance and illegal money transfers, which reduces the credibility of market. This paper reviews the environment of wholesale market such as types of transactions, roles of participants of the market, and various types and characteristics of frauds, and introduces the whole process of developing the phantom transaction detection model. The process consists of the following 4 modules: (1) Data cleaning and standardization (2) Statistical data analysis such as distribution and correlation analysis, (3) Construction of classification model using decision-tree induction approach, (4) Verification of the model in terms of hit ratio. We collected real data from 6 associations of agricultural producers in metropolitan markets. Final model with a decision-tree induction approach revealed that monthly average trading price of item offered by forwarders is a key variable in detecting the phantom transaction. The verification procedure also confirmed the suitability of the results. However, even though the performance of the results of this research is satisfactory, sensitive issues are still remained for improving classification accuracy and conciseness of rules. One such issue is the robustness of data mining model. Data mining is very much data-oriented, so data mining models tend to be very sensitive to changes of data or situations. Thus, it is evident that this non-robustness of data mining model requires continuous remodeling as data or situation changes. We hope that this paper suggest valuable guideline to organizations and companies that consider introducing or constructing a fraud detection model in the future.

Research on Factors Affecting Smartphone App Market Selection: App Market Platform Provider's Perspective (스마트폰 앱 마켓 선택에 영향을 미치는 요인에 관한 연구: 앱 마켓 플랫폼 사업자 관점으로)

  • Lee, Ho;Kim, Jae Sung;Kim, Kyung Kyu;Lee, Youngin
    • Journal of the Korea Knowledge Information Technology Society
    • /
    • v.13 no.1
    • /
    • pp.11-23
    • /
    • 2018
  • This paper empirically investigates the factors that influence the consumer choice of an app market based on the rational choice theory. The app market is the only channel where a consumer can buy smartphone apps, which give various functional convenience and are considered to be a major contributor to the proliferation of smartphones. Analyses of 281 questionnaires show that usability and structural guarantees as benefit factors significantly influence the app market choice. From the cost perspectives, both monetary and non-monetary conversion costs are found to significantly influence the app market choice. On the other hand, customer trust, information quality, and market image were found to have no significant effect on app market selection. In particular, Korean app market platform providers (KT, LG U +) seem to be superior in terms of structural guarantees, such as customer center operation and damage compensation regulations, compared to overseas app market platform operators (Google). However, in the case of the Google App Market, it is pre-installed on all Android phones, so it is not inconvenient to install additional apps to use other app market. This is disadvantageous to domestic app market platform operators, and it is necessary to establish a policy solution point. In terms of operator costs, both monetary and non-monetary conversion costs have a significant impact on app market choice. In particular, non-monetary conversion costs have a negative impact on Korean app market platform operators. It can be explained that the service expectation level of the domestic app market is low and it is recognized that the time cost factor such as membership is large for new users to use. It seems to be necessary to improve the domestic app market business. Meanwhile, extant research on smartphone apps focuses on the purchase of apps themselves, but not on the selection of the app market itself. In order to fill in this gap, this study focuses on the determinants of app market selection, including the characteristics of an app market and the switching costs.

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

A study on the developing and implementation of the Cyber University (가상대학 구현에 관한 연구)

  • Choi, Sung;Yoo, Gab-Sang
    • Proceedings of the Technology Innovation Conference
    • /
    • 1998.06a
    • /
    • pp.116-127
    • /
    • 1998
  • The Necessity of Cyber University. Within the rapidly changing environment of global economics, the environment of higher education in the universities, also, has been, encountering various changes. Popularization on higher education related to 1lifetime education system, putting emphasis on the productivity of education services and the acquisition of competitiveness through the market of open education, the breakdown of the ivory tower and the Multiversitization of universities, importance of obtaining information in the universities, and cooperation between domestic and oversea universities, industry and educational system must be acquired. Therefore, in order to adequately cope wi th these kinds of rapid changes in the education environment, operating Cyber University by utilizing various information technologies and its fixations such as Internet, E-mail, CD-ROMs, Interact ive Video Networks (Video Conferencing, Video on Demand), TV, Cable etc., which has no time or location limitation, is needed. Using informal ion and telecommunication technologies, especially the Internet is expected to Or ing about many changes in the social, economics and educational area. Among the many changes scholars have predicted, the development and fixations of Distant Learning or Cyber University was the most dominant factor. In the case of U. S. A., Cyber University has already been established and in under operation by the Federate Governments of 13 states. Any other universities (around 500 universities has been opened until1 now), with the help of the government and private citizens have been able to partly operate the Cyber University and is planning on enlarging step-by-step in the future. It could be seen not only as U. S. A. trying to elevate its higher education through their leading information technologies, but also could be seen as their objective in putting efforts on subordinating the culture of the education worldwide. UTRA University in U. S. A., for example, is already exporting its class lectures to China, and Indonesia regions. Influenced by the Cyber University current in the U.S., the Universities in Korea is willing .to arrange various forms of Cyber Universities. In line with this, at JUNAM National University, internet based Cyber University, which has set about its work on July of 1997, is in the state of operating about 100 Cyber Universities. Also, in the case of Hanam University, the Distant Learning classes are at its final stage of being established; this is a link in the rapid speed project of setting an example by the Korean Government. In addition, the department of education has selected 5 universities, including Seoul Cyber Design University for experimentation and is in the stage of strategic operation. Over 100 universities in Korea are speeding up its preparation for operating Cyber University. This form of Distant Learning goes beyond the walls of universities and is in the trend of being diffused in business areas or in various training programs of financial organizations and more. Here, in the hope that this material would some what be of help to other Universities which are preparing for Cyber University, I would 1ike to introduce some general concepts of the components forming Cyber University and Open Education System which has been established by JUNAM University. System of Cyber University could be seen as a general solution offered by tile computer technologies for the management on the students, Lectures On Demand, real hour based and satellite classes, media product ion lab for the production of the multimedia Contents, electronic library, the Groupware enabling exchange of information between students and professors. Arranging general concepts of components in the aspect of Cyber University and Open Education, it would be expressed in the form of the establishment of Cyber University and the service of Open Education as can be seen in the diagram below.

  • PDF

A Study on Users' Resistance toward ERP in the Pre-adoption Context (ERP 도입 전 구성원의 저항)

  • Park, Jae-Sung;Cho, Yong-Soo;Koh, Joon
    • Asia pacific journal of information systems
    • /
    • v.19 no.4
    • /
    • pp.77-100
    • /
    • 2009
  • Information Systems (IS) is an essential tool for any organizations. The last decade has seen an increasing body of knowledge on IS usage. Yet, IS often fails because of its misuse or non-use. In general, decisions regarding the selection of a system, which involve the evaluation of many IS vendors and an enormous initial investment, are made not through the consensus of employees but through the top-down decision making by top managers. In situations where the selected system does not satisfy the needs of the employees, the forced use of the selected IS will only result in their resistance to it. Many organizations have been either integrating dispersed legacy systems such as archipelago or adopting a new ERP (Enterprise Resource Planning) system to enhance employee efficiency. This study examines user resistance prior to the adoption of the selected IS or ERP system. As such, this study identifies the importance of managing organizational resistance that may appear in the pre-adoption context of an integrated IS or ERP system, explores key factors influencing user resistance, and investigates how prior experience with other integrated IS or ERP systems may change the relationship between the affecting factors and user resistance. This study focuses on organizational members' resistance and the affecting factors in the pre-adoption context of an integrated IS or ERP system rather than in the context of an ERP adoption itself or ERP post-adoption. Based on prior literature, this study proposes a research model that considers six key variables, including perceived benefit, system complexity, fitness with existing tasks, attitude toward change, the psychological reactance trait, and perceived IT competence. They are considered as independent variables affecting user resistance toward an integrated IS or ERP system. This study also introduces the concept of prior experience (i.e., whether a user has prior experience with an integrated IS or ERP system) as a moderating variable to examine the impact of perceived benefit and attitude toward change in user resistance. As such, we propose eight hypotheses with respect to the model. For the empirical validation of the hypotheses, we developed relevant instruments for each research variable based on prior literature and surveyed 95 professional researchers and the administrative staff of the Korea Photonics Technology Institute (KOPTI). We examined the organizational characteristics of KOPTI, the reasons behind their adoption of an ERP system, process changes caused by the introduction of the system, and employees' resistance/attitude toward the system at the time of the introduction. The results of the multiple regression analysis suggest that, among the six variables, perceived benefit, complexity, attitude toward change, and the psychological reactance trait significantly influence user resistance. These results further suggest that top management should manage the psychological states of their employees in order to minimize their resistance to the forced IS, even in the new system pre-adoption context. In addition, the moderating variable-prior experience was found to change the strength of the relationship between attitude toward change and system resistance. That is, the effect of attitude toward change in user resistance was significantly stronger in those with prior experience than those with no prior experience. This result implies that those with prior experience should be identified and provided with some type of attitude training or change management programs to minimize their resistance to the adoption of a system. This study contributes to the IS field by providing practical implications for IS practitioners. This study identifies system resistance stimuli of users, focusing on the pre-adoption context in a forced ERP system environment. We have empirically validated the proposed research model by examining several significant factors affecting user resistance against the adoption of an ERP system. In particular, we find a clear and significant role of the moderating variable, prior ERP usage experience, in the relationship between the affecting factors and user resistance. The results of the study suggest the importance of appropriately managing the factors that affect user resistance in organizations that plan to introduce a new ERP system or integrate legacy systems. Moreover, this study offers to practitioners several specific strategies (in particular, the categorization of users by their prior usage experience) for alleviating the resistant behaviors of users in the process of the ERP adoption before a system becomes available to them. Despite the valuable contributions of this study, there are also some limitations which will be discussed in this paper to make the study more complete and consistent.

Position and function of dance education in arts and cultural education (문화예술교육에서 무용교육의 위치와 기능)

  • Hwang, Jeong-ok
    • (The) Research of the performance art and culture
    • /
    • no.36
    • /
    • pp.531-551
    • /
    • 2018
  • The educational trait that the arts and cultural education and dance strive for at a time when the ethical tasks of life is the experience for insight of life. The awareness of time entrusted with the intensity [depth] of artistic and aesthetic experience is to contain its implication with policy and system. In the policy territory, broad perception and strategy are combined and practiced to produce new implication. Therefore, on the basis of characteristics and spectrum persuaded at a time when the arts and cultural education and dance education are broadly expanded, the result of this study after taking a look at the role of dance education within the arts and cultural education is shown as follows. The value striving for by the culture and arts education and dance education is to structure the life form with the artistic experience through the art as the ultimate life description. This is attributable to the fact that the artistic trait structured with self-understanding and self-expression contains the directivity of life that is recorded and depicted in the process of life. The dance education in the culture and arts education has the trait to view the world with the dance structure as the comprehensive study as in other textbook or art genre under the awareness of time and education system category within the school system and it has diverse social issues combined as related to the frame of social growth and advancement outside of school. When taking a look at the practical characteristics (method) of dance based on the arts and cultural education business, it facilitates the practice strategy through dance, in dance, about dance, between dance with the artist for art [dance]. At this time, the approachability of dance is deployed in a program based on diverse artistry for technology, expression, understanding, symbolism and others and it has the participation of enjoyment and preference. In the policy project of the culture and arts education, the dance education works as the function of education project as an alternative model on the education system and it also sometimes works as the function for social improvement and development to promote the community awareness and cultural transformation through the involvement and intervention of social issues.

A Machine Learning-based Total Production Time Prediction Method for Customized-Manufacturing Companies (주문생산 기업을 위한 기계학습 기반 총생산시간 예측 기법)

  • Park, Do-Myung;Choi, HyungRim;Park, Byung-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.177-190
    • /
    • 2021
  • Due to the development of the fourth industrial revolution technology, efforts are being made to improve areas that humans cannot handle by utilizing artificial intelligence techniques such as machine learning. Although on-demand production companies also want to reduce corporate risks such as delays in delivery by predicting total production time for orders, they are having difficulty predicting this because the total production time is all different for each order. The Theory of Constraints (TOC) theory was developed to find the least efficient areas to increase order throughput and reduce order total cost, but failed to provide a forecast of total production time. Order production varies from order to order due to various customer needs, so the total production time of individual orders can be measured postmortem, but it is difficult to predict in advance. The total measured production time of existing orders is also different, which has limitations that cannot be used as standard time. As a result, experienced managers rely on persimmons rather than on the use of the system, while inexperienced managers use simple management indicators (e.g., 60 days total production time for raw materials, 90 days total production time for steel plates, etc.). Too fast work instructions based on imperfections or indicators cause congestion, which leads to productivity degradation, and too late leads to increased production costs or failure to meet delivery dates due to emergency processing. Failure to meet the deadline will result in compensation for delayed compensation or adversely affect business and collection sectors. In this study, to address these problems, an entity that operates an order production system seeks to find a machine learning model that estimates the total production time of new orders. It uses orders, production, and process performance for materials used for machine learning. We compared and analyzed OLS, GLM Gamma, Extra Trees, and Random Forest algorithms as the best algorithms for estimating total production time and present the results.

A study on the impact and activation plan of unmanned aerial vehicle service (무인항공기 서비스 영향성과 활성화 방안 연구)

  • Yoo, Soonduck
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.1-7
    • /
    • 2022
  • The purpose of this study is to discuss the impact of unmanned aerial vehicle service and how to activate it. The discussion on the impact of the introduction of the unmanned aerial vehicle service was examined in terms of economic, environmental, and social acceptance, and a plan to revitalize the industry was presented. In terms of economic impact, if transportation services are increased using unmanned aerial vehicles in the future, road-based transportation cargo may decrease and road movement speed may increase due to reduced road congestion. This can have a positive effect on the increase in the value of land or real estate assets, and it also provides an impact on smart city design. In terms of environmental impact, unmanned aerial vehicles (UAVs) generally move through electricity, so they emit less exhaust gas compared to other existing devices, such as vehicles and railroads, and thus have less environmental impact. However, noise can have a negative impact on the habitat in the presence of wild animals along their migration routes. In terms of social acceptability of unmanned aerial vehicles (UAV) technology, areas that are declining due to the emergence of new services may appear, and at the same time, organizations that create profits may appear, causing conflicts between industries. Therefore, it is essential to form a social consensus on the acceptance of emerging industries. The government should come up with various countermeasures to minimize the negative impact that reflects the characteristics of the unmanned aerial vehicle use service. Just as various systems such as road signs were introduced so that vehicles can be operated on the ground to secure air routes in the mid- to long-term for revitalization of unmanned-based industries, development and establishment of services that should be introduced and applied prior to constructing air routes I need this. In addition, the design and implementation of information collection and operation plans for unmanned air traffic management in Korea and a plan to secure a control system for each region should also be made. This study can contribute to providing ideas for mid- to long-term research on new areas with the development of the unmanned aerial vehicle industry.