• Title/Summary/Keyword: technology outflow

Search Result 190, Processing Time 0.026 seconds

A Study of Sewage Treatment with a Self-Cleaning Filtration Unit (자기세정 여과 반응장치를 이용한 하수처리에 관한 연구)

  • Mo, Sung-Young;Lee, Pul-Eip;Kim, Bum-Su;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, sewage was fed with up flow direction into a reactor equipped with a screw to circulate media that had lower specific gravity than water. It was observed that the media in the reactor could be circulated by a screw with reverse flow of the sewage feeding from the top to the bottom direction. Under these conditions, concentrations of inflow and outflow pollutants were measured at the filtration unit. Experimental results revealed stable circulation of the media with a screw in the reactor. Circulation of the media in the reactor showed more efficiency in removing the pollutants (particulate matters and organics) than no circulation. The maximum removal efficiencies of suspended solid (SS), chemical oxygen demand (CODmn), and total phosphorus (T-P) were 96%, 72% and 65%, respectively. Improvements for SS, CODmn and T-P removals with circulation of media were 52.38%, 43.14% and 118.12% respectively, compared to those without circulation.

Numerical Analysis of Behavior of Ground Near LNG Tank Foundation Under Scenario of LNG Leakage (LNG 탱크에서 천연가스 유출시 얕은 기초 주변 지반거동의 수치해석적 분석)

  • Kim, Jeongsoo;Kim, Youngseok;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.81-92
    • /
    • 2018
  • Recently, the use of natural gas has steadily increased due to its economical advantage and increased demand of clean energy uses. Accordingly, construction of LNG storage tanks is also increased. Secure of the stability of LNG tanks storage requires high technology as natural gas is stored in a liquid state for efficiency of storage. When a cryogenic LNG fluid leaks on ground due to a defect in LNG tank, damage is expected to be significant. Many researchers evaluated the critical and negative effects of LNG leakage, but there is limited research on the effect of cryogenic fluid leakage on the ground supporting LNG tanks. Therefore, in this study, the freezing expansion of the ground during cryogenic LNG fluid leakage was evaluated considering various outflow situations and ground conditions. The LNG leakage scenarios were simulated based on numerical analyses results varying the surcharge load, temperature boundary conditions, and soil types including freeze-sensitive soil. Consequently, short and long term ground temperature variations after LNG leakage were evaluated and the resulting ground behavior including vertical displacement behavior and porosity were analyzed.

Uncertainty Analysis based on LENS-GRM

  • Lee, Sang Hyup;Seong, Yeon Jeong;Park, KiDoo;Jung, Young Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.208-208
    • /
    • 2022
  • Recently, the frequency of abnormal weather due to complex factors such as global warming is increasing frequently. From the past rainfall patterns, it is evident that climate change is causing irregular rainfall patterns. This phenomenon causes difficulty in predicting rainfall and makes it difficult to prevent and cope with natural disasters, casuing human and property damages. Therefore, accurate rainfall estimation and rainfall occurrence time prediction could be one of the ways to prevent and mitigate damage caused by flood and drought disasters. However, rainfall prediction has a lot of uncertainty, so it is necessary to understand and reduce this uncertainty. In addition, when accurate rainfall prediction is applied to the rainfall-runoff model, the accuracy of the runoff prediction can be improved. In this regard, this study aims to increase the reliability of rainfall prediction by analyzing the uncertainty of the Korean rainfall ensemble prediction data and the outflow analysis model using the Limited Area ENsemble (LENS) and the Grid based Rainfall-runoff Model (GRM) models. First, the possibility of improving rainfall prediction ability is reviewed using the QM (Quantile Mapping) technique among the bias correction techniques. Then, the GRM parameter calibration was performed twice, and the likelihood-parameter applicability evaluation and uncertainty analysis were performed using R2, NSE, PBIAS, and Log-normal. The rainfall prediction data were applied to the rainfall-runoff model and evaluated before and after calibration. It is expected that more reliable flood prediction will be possible by reducing uncertainty in rainfall ensemble data when applying to the runoff model in selecting behavioral models for user uncertainty analysis. Also, it can be used as a basis of flood prediction research by integrating other parameters such as geological characteristics and rainfall events.

  • PDF

Comparison of Nitrogen Removal in Free Water Surface Wetlands Purifying Stream Water with and without Litter Layer on its Bottom (자유수면습지의 잔재물층에 의한 하천수 질소제거 비교)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.120-129
    • /
    • 2008
  • Removal rate of $NO_3-N$ and TN in a free water surface wetland system with litter layer on its bottom was compared with that without one. The system was established on floodplain in the down reach of the Gwangju Stream in 2001. Its dimensions were 31 meters in length and 12 meters in width. Water of the stream was funneled into it and its effluent was discharged back into the channel. Average litter layer of 9.6 cm was formed on its bottom in 2007. The layer and above-ground parts of reeds and cattails on the system were eliminated in Spring 2008. Volumes and water quality of inflow and outflow of the system were analyzed from May to November in 2007 and 2008, respectively. Inflow into the system both in 2007 and 2008 averaged approximately $40m^3/day$ and hydraulic residence time both in 2007 and 2008 was about 1.5 days. Average influent $NO_3-N$ concentration in 2007 and 2008 was 2.16 and 2.05 mg/L, respectively and influent TN concentration in 2007 and 2008 averaged 3.98 and 3.89 mg/L, respectively. With a 0.05 significance level, effluent temperatures, influent concentrations of $NO_3-N$ and TN, and stem numbers per square meter and height of the emergent plants showed no difference between the system with litter layer and without one. $NO_3-N$ removal in the system with litter layer and without it averaged 55.59 and 46.06%, respectively and TN retention averaged 57.24 and 48.97%, respectively. Both $NO_3-N$ and TN abatement rates in the system with litter layer were significantly high (p < 0.001) when compared with those without one. The wetland system having litter layer on its bottom was more efficient for $NO_3-N$ and TN retention than that without one.

Analysis of Runoff Reduction Effect and Rainfall Intensity-Duration Time of Permeable Block Facility (투수블록시설의 유출저감효과 분석 및 강우강도-지속시간 관계 분석)

  • Han, Sangyun;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Non-point pollution adversely affects the water system and its influence is increasing. In order to manage such nonpoint source pollution, the government has conducted studies on LID (Low Impact Development) facilities and various efficiency evaluations. In this study, the actual installed permeable block facility among the various LID facilities was analyzed the effluent reduction rate, the residual rainfall analysis, the runoff duration time and the reduction rate of the maximum inflow and outflow for the rainfall runoff control and the results were compared the other facilities. The analysis results show that the reduction efficiency is high in order of impermeable block, filter type permeable block, and clearance type permeable block, and the graph showing the relationship between the rainfall intensity and the runoff duration time is presented. This graph can be helpful in the design of facilities such as the facility capacity selection according to the reproduction period of the permeable block facility similar to this.

Distribution of Anchovy School Catched by the Lift Net and Environmental factors in the Kamak Bay 2. Relation between Distribution of Anchovy school and Chlorophyll-a (가막만에서의 멸치 들망 어장의 분포.이동과 환경 요인과의 관계 2. 기초생산자의 출현과 어군의 분포)

  • 서영준
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.4
    • /
    • pp.377-385
    • /
    • 1999
  • In order to investigate the properties in distribution and movement of anchovy school catches by the lift net in the Kamak bay and their relation to the environmental factors, I. e., the amount of chlorophyll-a and turbidity were observed from June to August in 1997 and compared with the catch of anchovy by the lift net. The results obtained are summarized as follows;1) The amount of chlorophyll-a ranged from 4.0 to 12.0 mg/$m^3$ on July and from 3.0 to 15.0 mg/$m^3$ on August in horizontal distribution, the amount of chlorophyll-a ranged from 3.0 to 8.0mg/$m^3$ on June, from 5.5 to 11.6 mg/㎥ on July, and from 6.0 to 11.1 mg/$m^3$ on July and from 1.0 to 6.0ppm on August, respectively. 2) Anchovy school can be presurmed, they are come from north of bay, visited and distributed through east of bay at the middle of June. Moreover, they spreaded in all bay. Then gradually, when July arrive, they go to the south the nearest the coasts, and they are outflow through the south entrance of bay at the end of August.3) The catch of anchovy was highest on July, poor second on August, and lowest on June. The chlorophyll-a and the turbidity influenced remarkably on the distribution and movement of anchovy school and the influence of chlorophyll-a was alrgest.

  • PDF

Total Phosphorus Removal Rate of a Subsurface-Flow Wetland System Constructed on Floodplain During Its Initial Operation Stage (고수부지에 조성한 수질정화 여과습지의 초기운영단계 총인 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.6
    • /
    • pp.49-55
    • /
    • 2003
  • Total phosphorous removal rate was examined of a subsurface-flow treatment wetland system which was constructed on floodplain in the down reach of the Kwangju Stream in Korea from May to June 2001. Its dimensions were 29 meter in length, 9 meter in width and 0.65 meter in depth. A bottom layer of 45 cm in depth was filled with crushed granite with about 15~30 mm in diameter and a middle layer of 10 cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds(Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju Stream flowed from a submerged dam into it via a pipe by gravity flow and treated effluent was funneled back into the Stream. The number of reed stems increased from 80 stems/$m^2$ in July 2001 to 136 stems/$m^2$ in September 2001. The hight of stems was 44.2 cm in July 2001 and 75.3 cm in September 2001. The establishment of reeds at early operating stage of the system was good. Volume and water quality of inflow and outflow were investigated from July 2001 through December 2001. The average inflow was 40 $m^3$/day and hydraulic detention time was about 1.5 days. The concentration of total phosphorous n influent and effluent was 0.83 and 0.33 mg/L, respectively. The removal rate of total phosphorous averaged about 60%. The removal efficiency was slightly higher, compared with that of subsurface-flow wetlands operating in North America, whose retention rate of total phosphorous was reported to be about 56%. The good abatement rate could be attributed to sedimentation of particle phosphorous in pores of the media and adsorption of phosphorous to the biofilm developed on the surface of them. Increase of standing density of reeds within a few years will develop root zones which may lead to increment in the phosphorous retention rate.

Comparison of Seasonal Nitrogen Removal by Free-Water Surface Wetlands Planted with Iris pseudacorus L. (노랑꽃창포 자유수면습지의 계절에 따른 질소제거 비교)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.1
    • /
    • pp.121-132
    • /
    • 2011
  • Removal rates of $NO_3$-N and TN in the free-water surface wetland system during winter; December, January, February and March, spring and fall; April, May, October and November, and summer; Jun, July, August and September were investigated. The system was established on floodplain in the downstream reach of the Gwangju Stream in 2008. It measures 50 meters in length and 5.5 meters in width. Iris pseudacorus L. grown in pots for about two years were planted in the system. The water stream was funneled in by gravity and its effluent was discharged back in. Volumes and water quality of inflow and outflow were analyzed from December 2008 to November 2010. The inflow was averaged approximately 350 $m^3/day$ and hydraulic residence time was about 3 hours. Average influent and effluent $NO_3$-N concentration was 3.75 and 3.35 mg/L, respectively and $NO_3$-N retention was amounted to 10.6%. Influent and effluent TN concentration were averaged 4.93 and 4.30 mg/L, respectively and TN abatement reached to 12.9%. One-way ANOVA statistics claimed that the average removal rates of $NO_3$-N and TN during winter, spring and fall, and summer were not always the same (p<0.001). The t-Tests of three pairs among $NO_3$-N removal rates of winter, spring and fall, and summer illustrated that the removal rates of winter ($5.04{\pm}1.94$), spring and fall ($10.53{\pm}2.24$), and summer ($18.61{\pm}2.26$) were significantly different each others (p<0.001). Among TN removal rates, the three pairs of t-Tests of three seasons showed that the removal rates of winter ($5.21{\pm}2.51$), spring and fall ($11.71{\pm}3.12$), and summer ($21.53{\pm}4.86$) were significantly different from each others (p<0.001).

Comparison of Nitrogen Removal During Plant Growing Season with Non-Growing One in Free Water Surface Wetlands Purifying Stream Water (하천수를 정화하는 자유수면습지의 식물 성장기와 비성장기의 질소제거 비교)

  • Yang, Hong-Mo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.82-92
    • /
    • 2010
  • Removal rates of NO3-N and TN in a free water surface wetland system during emergent plant growing season and non-growing were investigated. The system was established on floodplain in the down reach of the Gwangju Stream in 2008. Its dimensions were 46 meters in length and 5 meters in width. Typha angustifloria L. growing in pots about two years were planted on the half area of the system and Zizania latifolia Turcz on the other half. Water of the stream was funneled into it by gravity flow and its effluent was discharged back into it. Volumes and water quality of inflow and outflow were analyzed from October 2008 to September 2009. Inflow into the system averaged approximately 715 $m^3$/day and hydraulic residence time was about 1.5 hr. Average influent and effluent $NO_3$-N concentration was 3.37 and 2.74 mg/L, respectively and $NO_3$-N retention amounted to 18.7%. Influent and effluent TN concentration averaged 4.67 and 3.69 mg/L, respectively and TN abatement reached to 20.9%. $NO_3$-N removal rate (%) during plant growing season ($22.67{\pm}3.70$, mean ${\pm}$ standard error) was significantly high (p<0.001) when compared with that during plant non-growing one ($15.02{\pm}3.23$). TN abatement rate (%) during plant growing season ($27.42{\pm}5.98$) was also significantly high (p<0.001) when compared with that during plant non-growing one ($13.66{\pm}3.08$).

Effect of Retention Time on the Removal Efficiency in Grassed Swale (체류시간이 식생수로 저감효율에 미치는 영향)

  • Paek, Seoungbong;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.371-381
    • /
    • 2014
  • Recently the water quality management policy gives priority to management the point source. Non-point pollution source is difficult to comprehend because those don't have certain outflow point and emission. There are many development and research about BMPs for manage the Non-point pollution source. Various methods of removal efficiency are presented for assessment of Best Management Practices (BMPs). In this study, retention time have effect on removal efficiency based on monitoring results of Grassed Swale is studied. Also, Compare a difference according to various methods of Grassed Swale removal efficiency. The result of removal efficiency analysis depending on retention time of Grassed Swale, removal efficiency is higher as retention time increases. To obtain a stable removal efficiency of Grassed Swale, retention time of Grassed Swale should be secure.