• Title/Summary/Keyword: technology frontier

Search Result 300, Processing Time 0.027 seconds

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

Environmental test campaign of a 6U CubeSat Test Platform equipped with an ambipolar plasma thruster

  • Stesina, Fabrizio;Corpino, Sabrina;Borras, Eduard Bosch;Amo, Jose Gonzalez Del;Pavarin, Daniele;Bellomo, Nicolas;Trezzolani, Fabio
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.195-215
    • /
    • 2022
  • The increasing interest in CubeSat platforms ant their capability of enlarging the frontier of possible missions impose technology improvements. Miniaturized electrical propulsion (EP) systems enable new mission for multi-unit CubeSats (6U+). While electric propulsion systems have achieved important level of knowledge at equipment level, the investigation of the mutual impact between EP system and CubeSat technology at system level can provide a decisive improvement for both the technologies. The interaction between CubeSat and EP system should be assessed in terms of electromagnetic emissions (both radiated and conducted), thermal gradients, high electrical power management, surface chemical deposition, and quick and reliable data exchanges. This paper shows how a versatile CubeSat Test Platform (CTP), together with standardized procedures and specialized facilities enable the acquisition fundamental and unprecedented information. Measurements can be taken both by specific ground support equipment placed inside the vacuum facility and by dedicated sensors and subsystems installed on the CTP, providing a completely new set of data never obtained before. CTP is constituted of a 6U primary structure hosting the EP system, representative CubeSat avionics and batteries. For the first test campaign, CTP hosts the ambipolar plasma propulsion system, called Regulus and developed by T4I. After the integration and the functional test in laboratory environment, CTP + Regulus performed a Test campaign in relevant environment in the vacuum chamber at CISAS, University of Padua. This paper is focused on the test campaign description and the main results achieved at different power levels for different duration of the firings.

Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak's elastic foundations

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Fouad Bourada;Abdelhakim Bouhadra
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.307-323
    • /
    • 2023
  • In this research, the study of the thermoelastic flexural analysis of silicon carbide/Aluminum graded (FG) sandwich 2D uniform structure (plate) under harmonic sinusoidal temperature load over time is presented. The plate is modeled using a simple two dimensional integral shear deformation plate theory. The current formulation contains an integral terms whose aim is to reduce a number of variables compared to others similar solutions and therefore minimize the computation time. The transverse shear stresses vary according to parabolic distribution and vanish at the free surfaces of the structure without any use of correction factors. The external load is applied on the upper face and varying in the thickness of the plates. The structure is supposed to be composed of "three layers" and resting on nonlinear visco-Pasternak's-foundations. The governing equations of the system are deduced and solved via Hamilton's principle and general solution. The computed results are compared with those existing in the literature to validate the current formulation. The impacts of the parameters (material index, temperature exponent, geometry ratio, time, top/bottom temperature ratio, elastic foundation type, and damping coefficient) on the dynamic flexural response are studied.

Analysis of Discriminant Accuracy of Estimated Load Carrying Capacity in Bridges (교량 추정 내하율 판별 정확도 분석)

  • Kyu San Jung;Dong Woo Seo;Byeong Cheol Kim;Gun Soo Kim;Ki Tae Park;Woo Jong Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.123-128
    • /
    • 2023
  • This paper presents the results of an analysis of the discrimination accuracy of a bridge load carrying capacity estimation model based on data from inspection reports. The load carrying rate estimation model was derived using statistical methods through the collection of 2,161 inspection reports. By entering the bridge specifications and maintenance information, you can check the estimated load carrying capacity of the bridge. In order to verify the discrimination accuracy of the estimated load carrying rate model, the estimated load carrying rate was compared with the load carrying rate in the inspection and diagnosis report for 164 public bridges for which data was available. Although there are differences depending on the bridge type, the results were obtained with an accuracy of over 80% in determining the estimated load carrying capacity.

Case Study for Test of Practical Competency in ICT (정보통신 실무역량 평가에 대한 사례연구)

  • Shim, Jang-sup;Jeong, Jea-hun;Ihm, Seung-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.67-70
    • /
    • 2015
  • This paper describes a one of HRD Program focus on ICT technology called TOPCIT as that companies and higher education providers voiced the need for a standardized, objective competency index that can reinforce the on-site competency of college students majoring in ICT/SW. And reduce the gap between the viewpoints of industrial and academic circles regarding the qualifications of a competent specialist in ICT field. For this reason, T.OPCIT developed and evaluated a performance-evaluation-centered test designed to diagnose and assess the competency of ICT specialists and SW developers critically needed to perform jobs on the professional frontier. This TOPCIT concept has been promoted not just in KOREA but in many ASEAN countries, e.g Thailand, Nepal, Bhutan, Philippines, Mongolia and Cambodia during the ICTD-USO Forum organised by ITU-ASP.

  • PDF

3D printing technology and its applications in the future food industry: a review (3D 프린팅 기술과 미래식품산업의 응용)

  • Yoon, Hyung-Sun;Lee, Mihyun;Jin, Xuanyan;Kim, Su-Jin;Lee, Soyeon;Kim, Yeon-Bi;You, Young-Sun;Rhee, Jin-Kyu
    • Food Science and Industry
    • /
    • v.49 no.4
    • /
    • pp.64-69
    • /
    • 2016
  • The potentialities of 3D printing technology are discussed from technical and research-oriented perspectives for industrial manufacturing of a variety of food products. Currently, 3D printing technology has advanced to enable us to process or cook innovative foods. However, food-based materials for 3D printing are still limited in terms of eating qualities, nutritional values and functionality as well as industrial production. Therefore, this uprising issue on alternative food processing techniques especially focused on the exploration of new food materials combined with these 3D printing technologies needs to be re-spotlighted, and then solved to pave the way to this innovative and sensational area of investigation with more accessibility. In this review, previous research work and industrial applications conducted by frontier research groups in this field are covered, then to open discussion for future research on the 3D printing of food.

Recovering Critical Metal Ions from Battery Wastes: A Brief Review (폐배터리에서 희소금속을 회수하는 기술에 대한 총론)

  • Hyo Jung Kim;Cheol Lee;Won Seok Chang;Go Gi Lee;Jong Suk Lee
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • The rapid expansion of the electric vehicle market has led to increased demand for battery recycling technologies. The recycling of spent batteries is crucial to stabilize the supply of rare metals, including lithium, cobalt and nickel, which are essential components for the battery industry. In addition, the technology for recycling spent batteries can help to reduce environmental and health impacts. This review presents the theoretical principles behind the metal recovery technology and the processes that are currently commercially available. It also describes trends in research and technological developments that aim to improve existing processes, and provides an overview of where recycling technology is headed.

Optogenetics: a New Frontier for Cell Physiology Study (광유전학: 세포 생리 연구를 위한 새로운 frontier)

  • Byun, Jonghoe
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.953-959
    • /
    • 2015
  • Optogenetics is the combination of optical and molecular strategies to control designated molecular and cellular activities in living tissues and cells using genetically encoded light-sensitive proteins. It involves the use of light to rapidly gate the membrane channels that allows for ion movement. Optogenetics began with the placing of light-sensitive proteins from green algae inside specific types of brain cells. The cells can then be turned on or off with pulses of blue and yellow light. Using the naturally occurring algal protein Channelrhodopsin-2 (ChR2), a rapidly gated light-sensitive cation channel, the number and frequency of action potentials can be controlled. The ChR2 provides a way to manipulate a single type of neuron while affecting no others, an unprecedented specificity. This technology allows the use of light to alter neural processing at the level of single spikes and synaptic events, yielding a widely applicable tool for neuroscientists and biomedical engineers. An improbable combination of green algae, lasers, gene therapy and fiber optics made it possible to map neural circuits deep inside the brain with a precision that has never been possible before. This will help identify the causes of disorders like depression, anxiety, schizophrenia, addiction, sleep disorder, and autism. Optogenetics could improve upon existing implanted devices that are used to treat Parkinson’s disease, obsessive-compulsive disorder and other ailments with pulses of electricity. An optogenetics device could hit more specific subsets of brain cells than those devices can. Applications of optogenetic tools in nonneuronal cells are on the rise.

Residue and Risk Assessment of Polychlorinated dibenzo-p-dioxin/dibenzofurans in the Korean Population (다이옥신류에 의한 한국인의 폭로 현황 및 리스크 평가)

  • Kang, Youn-Seok;Park, Jong-Sei;Min, Byung-Yoon
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.270-286
    • /
    • 2002
  • The human adipose and milk samples analyzed in this study were collected at hospitals in Seoul, Masan and Jinju. The mean values of International Dioxin Toxic Equivalents (I-TEQ) of PCDDs and PCDFs in human adipose samples from the three regions were calculated as 9 pg I-TEQ/g(0.2 ~ 30 pg TEQ/g, lipid weight basis) and 8 pg I-TEQ/g (0.8 ~ 25 pg TEQ/g), respectively. The residue levels of PCDDs-TEQ and PCDFs-TEQ in human milk collected from Masan were 13 pg I-TEQ/g (lipid wt.) and 4.8 pg I-TEQ/g, respectively. On the whole, the contamination levels of these compounds in the Korean population were lower than those in the other countries. Based on the analytical data and assuming a daily intake consumption of 800 mL milk with 3% fat, the average daily intake of PCDDs/DFs via human milk for a baby weighing 5 Kg could be calculated. The daily intake of PCDDs/DFs via breast-feeding was estimated to be 39 pg/kg body weight/day for 2,3,7,8-TeCDD and 86 pg/kg/day for TEQ. These levels are far above all virtually safe dose(VSD) or tolerable daily intake(TDI) values proposed by health authorities in various countries, ranging from 0.001(US EPA) to 4 pg/kag/day (WHO).

A Numerical Study on the Smoke Behavior by Solar Radiation through Ceiling Glass in Atrium Fires

  • Jeong, Jin-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.117-128
    • /
    • 2002
  • This paper describes the smoke filling process of a fire field model based on a self-deve-loped SMEP (Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of atrium space containing a ceiling heat flux. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy production term. Also it solves the radiation equation using the discrete ordinates method. Compressibility is assumed and the perfect gas law is used. Comparison of the calculated upper-layer average tempera-ture and smoke layer clear height with the zone models has shown reasonable agreement. The zone models used are the CFAST and the NBTC one-room. For atrium fires with ceiling glass the ceiling heat flux by solar heat causes a high smoke temperature near the ceiling. However, it has no effect on the smoke movement such as the smoke layer clear heights that are important in fire safety. In conclusion, the smoke layer clear heights that are important in evacuation activity except the early of a fire were not as sensitive as the smoke layer tem-perature to the nature of ceiling heat flux condition. Thus, a fire sensor in atrium with ceiling glass has to consider these phenomena.