• Title/Summary/Keyword: technology classification system

Search Result 1,460, Processing Time 0.035 seconds

Technical Trend Analysis of Fingerprint Classification (지문분류 기술 동향 분석)

  • Jung, Hye-Wuk;Lee, Seung
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.132-144
    • /
    • 2017
  • The fingerprint classification of categorizing fingerprints by classes should be used in order to improve the processing speed and accuracy in a fingerprint recognition system using a large database. The fingerprint classification methods extract features from the fingerprint ridges of a fingerprint and classify the fingerprint using learning and reasoning techniques based on the classes defined according to the flow and shape of the fingerprint ridges. In earlier days, many researches have been conducted using NIST database acquired by pressing or rolling finger against a paper. However, as automated systems using live-scan scanners for fingerprint recognition have become popular, researches using fingerprint images obtained by live-scan scanners, such as fingerprint data provided by FVC, are increasing. And these days the methods of fingerprint classification using Deep Learning have proposed. In this paper, we investigate the trends of fingerprint classification technology and compare the classification performance of the technology. We desire to assist fingerprint classification research with increasing large fingerprint database in improving the performance by mentioning the necessity of fingerprint classification research with consideration for fingerprint images based on live-scan scanners and analyzing fingerprint classification using deep learning.

A Study on the Application of Information Classification for Integration of Construction Information in Construction Phase (시공단계의 건설정보 통합을 위한 분류체계 적용에 관한 연구)

  • Kim Jin-Young;Kim Yong-Gu;Han Choong-Hee;Kim Sun-Kuk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.450-455
    • /
    • 2002
  • Construction market situation has been changed quickly in the 21st century. One is a large variety of information, the other is the development of IT technology among the rest of the change. Accordingly, it is very important that information is managed systematically and made good use of broadly in proportion to the increase of information volume. Therefore, the purpose of this study is to propose a applicable classification system in the construction phase. First of all, the Construction Information Classification proposed by the government is studied to apply the actual work and to build a applicable construction information classification for construction project. A base of the applicable classification system is the Construction Information Classification, SMM and Materials classification(Public Procurement Service). The applicable classification system to control and manage the construction information is consist of the 4 types : Facility classification, Element classification, Work classification, Resource classification (Materials, Equipment, Labor).

  • PDF

DEVELOPMENT OF OCCUPANT CLASSIFICATION AND POSITION DETECTION FOR INTELLIGENT SAFETY SYSTEM

  • Hannan, M.A.;Hussain, A.;Samad, S.A.;Mohamed, A.;Wahab, D.A.;Ariffin, A.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.827-832
    • /
    • 2006
  • Occupant classification and position detection have been significant research areas in intelligent safety systems in the automotive field. The detection and classification of seat occupancy open up new ways to control the safety system. This paper deals with a novel algorithm development, hardware implementation and testing of a prototype intelligent safety system for occupant classification and position detection for in-vehicle environment. Borland C++ program is used to develop the novel algorithm interface between the sensor and data acquisition system. MEMS strain gauge hermatic pressure sensor containing micromachined integrated circuits is installed inside the passenger seat. The analog output of the sensor is connected with a connector to a PCI-9111 DG data acquisition card for occupancy detection, classification and position detection. The algorithm greatly improves the detection of whether an occupant is present or absent, and the classification of either adult, child or non-human object is determined from weights using the sensor. A simple computation algorithm provides the determination of the occupant's appropriate position using centroidal calculation. A real time operation is achieved with the system. The experimental results demonstrate that the performance of the implemented prototype is robust for occupant classification and position detection. This research may be applied in intelligent airbag design for efficient deployment.

Separation and Recovery of Rare Earth Elements from Phosphor Sludge of Waste Fluorescent Lamp by Pneumatic Classification and Sulfuric Acidic Leaching

  • Takahashi, Touru;Takano, Aketomi;Saitoh, Takayuki;Nagano, Nobuhiro;Hirai, Shinji;Shimakage, Kazuyoshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.421-426
    • /
    • 2001
  • The pneumatic classification and acidic leaching behaviors of phosphor sludge have been examined to establish the recycling system of rare earth components contained in waste fluorescent lamp. At first, separation characteristic of rare earth components and calcium phosphate in phosphor sludge was investigated by pneumatic classification. After pneumatic classification of phosphor sludge, rare earth components were leached in various acidic solutions and sodium hydroxide solution. For recovery of soluble component in leaching solution, rare earth components were separated as hydroxide and oxalate precipitations. The experimental results obtained are summarized as follows: (1) In classification process, rare earth components in phosphor sludge were concentrated to 29.3% from 13.3%, and its yield was 32.9%. (2) In leaching process, sulfuric acid solution was more effective one as a leaching solvent of rare earth component than other solutions. Y and Eu components in phosphor sludge were dissolved in sulfuric acid solution of 1.5 k㏖/㎥, and other rare earth components were rarely dissolved in leaching solution. Leaching degrees of Y and Eu were respectively 92% and 98% in the following optimum leaching conditions; sulfuric acid concentration is 1.5 k㏖/㎥ , leaching temperature 343 K, leaching time 3.6 ks and pulp concentration 30 kg/㎥. (3) Y and Eu components of phosphor sludge contained in waste fluorescent lamp were, effectively recovered by three processes of pneumatic classification, sulfuric acid leaching and oxalate precipitation methods. Their recovery was finally about 65 %, and its purity was 98.2%.

  • PDF

Control of Seesaw balancing using decision boundary based on classification method

  • Uurtsaikh, Luvsansambuu;Tengis, Tserendondog;Batmunkh, Amar
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.11-18
    • /
    • 2019
  • One of the key objectives of control systems is to maintain a system in a specific stable state. To achieve this goal, a variety of control techniques can be used and it is often uses a feedback control method. As known this kind of control methods requires mathematical model of the system. This article presents seesaw unstable system with two propellers which are controlled without use of a mathematical model instead. The goal was to control it using training data. For system control we use a logistic regression technique which is one of machine learning method. We tested our controller on the real model created in our laboratory and the experimental results show that instability of the seesaw system can be fixed at a given angle using the decision boundary estimated from the classification method. The results show that this control method for structural equilibrium can be used with relatively more accuracy of the decision boundary.

Development of Intelligent Job Classification System based on Job Posting on Job Sites (구인구직사이트의 구인정보 기반 지능형 직무분류체계의 구축)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.123-139
    • /
    • 2019
  • The job classification system of major job sites differs from site to site and is different from the job classification system of the 'SQF(Sectoral Qualifications Framework)' proposed by the SW field. Therefore, a new job classification system is needed for SW companies, SW job seekers, and job sites to understand. The purpose of this study is to establish a standard job classification system that reflects market demand by analyzing SQF based on job offer information of major job sites and the NCS(National Competency Standards). For this purpose, the association analysis between occupations of major job sites is conducted and the association rule between SQF and occupation is conducted to derive the association rule between occupations. Using this association rule, we proposed an intelligent job classification system based on data mapping the job classification system of major job sites and SQF and job classification system. First, major job sites are selected to obtain information on the job classification system of the SW market. Then We identify ways to collect job information from each site and collect data through open API. Focusing on the relationship between the data, filtering only the job information posted on each job site at the same time, other job information is deleted. Next, we will map the job classification system between job sites using the association rules derived from the association analysis. We will complete the mapping between these market segments, discuss with the experts, further map the SQF, and finally propose a new job classification system. As a result, more than 30,000 job listings were collected in XML format using open API in 'WORKNET,' 'JOBKOREA,' and 'saramin', which are the main job sites in Korea. After filtering out about 900 job postings simultaneously posted on multiple job sites, 800 association rules were derived by applying the Apriori algorithm, which is a frequent pattern mining. Based on 800 related rules, the job classification system of WORKNET, JOBKOREA, and saramin and the SQF job classification system were mapped and classified into 1st and 4th stages. In the new job taxonomy, the first primary class, IT consulting, computer system, network, and security related job system, consisted of three secondary classifications, five tertiary classifications, and five fourth classifications. The second primary classification, the database and the job system related to system operation, consisted of three secondary classifications, three tertiary classifications, and four fourth classifications. The third primary category, Web Planning, Web Programming, Web Design, and Game, was composed of four secondary classifications, nine tertiary classifications, and two fourth classifications. The last primary classification, job systems related to ICT management, computer and communication engineering technology, consisted of three secondary classifications and six tertiary classifications. In particular, the new job classification system has a relatively flexible stage of classification, unlike other existing classification systems. WORKNET divides jobs into third categories, JOBKOREA divides jobs into second categories, and the subdivided jobs into keywords. saramin divided the job into the second classification, and the subdivided the job into keyword form. The newly proposed standard job classification system accepts some keyword-based jobs, and treats some product names as jobs. In the classification system, not only are jobs suspended in the second classification, but there are also jobs that are subdivided into the fourth classification. This reflected the idea that not all jobs could be broken down into the same steps. We also proposed a combination of rules and experts' opinions from market data collected and conducted associative analysis. Therefore, the newly proposed job classification system can be regarded as a data-based intelligent job classification system that reflects the market demand, unlike the existing job classification system. This study is meaningful in that it suggests a new job classification system that reflects market demand by attempting mapping between occupations based on data through the association analysis between occupations rather than intuition of some experts. However, this study has a limitation in that it cannot fully reflect the market demand that changes over time because the data collection point is temporary. As market demands change over time, including seasonal factors and major corporate public recruitment timings, continuous data monitoring and repeated experiments are needed to achieve more accurate matching. The results of this study can be used to suggest the direction of improvement of SQF in the SW industry in the future, and it is expected to be transferred to other industries with the experience of success in the SW industry.

Automatic Intrapulse Modulated LPI Radar Waveform Identification (펄스 내 변조 저피탐 레이더 신호 자동 식별)

  • Kim, Minjun;Kong, Seung-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • In electronic warfare(EW), low probability of intercept(LPI) radar signal is a survival technique. Accordingly, identification techniques of the LPI radar waveform have became significant recently. In this paper, classification and extracting parameters techniques for 7 intrapulse modulated radar signals are introduced. We propose a technique of classifying intrapulse modulated radar signals using Convolutional Neural Network(CNN). The time-frequency image(TFI) obtained from Choi-William Distribution(CWD) is used as the input of CNN without extracting the extra feature of each intrapulse modulated radar signals. In addition a method to extract the intrapulse radar modulation parameters using binary image processing is introduced. We demonstrate the performance of the proposed intrapulse radar waveform identification system. Simulation results show that the classification system achieves a overall correct classification success rate of 90 % or better at SNR = -6 dB and the parameter extraction system has an overall error of less than 10 % at SNR of less than -4 dB.

an Expert System for Part Classification and Coding (전문가 시스템을 이용한 부품 분류 및 코딩)

  • Park, Yang-Byung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.17-26
    • /
    • 1991
  • This paper discusses an expert system to generate part codes and construct part families, ESPCC, for the group technology application. The ESPCC, that is developed by using VP-Expert rule-based expert system development tool, embodies the specific knowledge of human experts to determine part codes consistent with the OPITZ classification and coding system. The ESPCC is implemented on an IBM compatible personal computers running MS-DOS.

  • PDF

Automation of Expert Classification in Knowledge Management Systems Using Text Categorization Technique (문서 범주화를 이용한 지식관리시스템에서의 전문가 분류 자동화)

  • Yang, Kun-Woo;Huh, Soon-Young
    • Asia pacific journal of information systems
    • /
    • v.14 no.2
    • /
    • pp.115-130
    • /
    • 2004
  • This paper proposes how to build an expert profile database in KMS, which provides the information of expertise that each expert possesses in the organization. To manage tacit knowledge in a knowledge management system, recent researches in this field have shown that it is more applicable in many ways to provide expert search mechanisms in KMS to pinpoint experts in the organizations with searched expertise so that users can contact them for help. In this paper, we develop a framework to automate expert classification using a text categorization technique called Vector Space Model, through which an expert database composed of all the compiled profile information is built. This approach minimizes the maintenance cost of manual expert profiling while eliminating the possibility of incorrectness and obsolescence resulted from subjective manual processing. Also, we define the structure of expertise so that we can implement the expert classification framework to build an expert database in KMS. The developed prototype system, "Knowledge Portal for Researchers in Science and Technology," is introduced to show the applicability of the proposed framework.