• Title/Summary/Keyword: technique for order of preference by similarity

Search Result 64, Processing Time 0.029 seconds

Multi-level Shape Optimization of Lower Arm by using TOPSIS and Computational Orthogonal Array (TOPSIS와 전산직교배열을 적용한 자동차 로워암의 다수준 형상최적설계)

  • Lee, Kwang-Ki;Han, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.482-489
    • /
    • 2011
  • In practical design process, designer needs to find an optimal solution by using full factorial discrete combination, rather than by using optimization algorithm considering continuous design variables. So, ANOVA(Analysis of Variance) based on an orthogonal array, i.e. Taguchi method, has been widely used in most parts of industry area. However, the Taguchi method is limited for the shape optimization by using CAE, because the multi-level and multi-objective optimization can't be carried out simultaneously. In this study, a combined method was proposed taking into account of multi-level computational orthogonal array and TOPSIS(Technique for Order preference by Similarity to Ideal Solution), which is known as a classical method of multiple attribute decision making and enables to solve various decision making or selection problems in an aspect of multi-objective optimization. The proposed method was applied to a case study of the multi-level shape optimization of lower arm used to automobile parts, and the design space was explored via an efficient application of the related CAE tools. The multi-level shape optimization was performed sequentially by applying both of the neural network model generated from seven-level four-factor computational orthogonal array and the TOPSIS. The weight and maximum stress of the lower arm, as the objective functions for the multi-level shape optimization, showed an improvement of 0.07% and 17.89%, respectively. In addition, the number of CAE carried out for the shape optimization was only 55 times in comparison to full factorial method necessary to 2,401 times.

A Study on the Ranking Strategy for the Product Improvement of the K Series Tank using AHP, Scoring Method, and TOPSIS (AHP와 평점법 및 TOPSIS를 활용한 K계열 전차 성능개량 우선순위에 대한 연구)

  • Na, Jae-Hyun;Park, Chan-Hyeon;Kim, Dong-Gil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.899-908
    • /
    • 2021
  • Since the modern weapon system is composed of a complex system, it is quite difficult to derive the priority of performance improvement factors. In addition, research on the method for prioritizing quantitative performance improvement factors considering the opinions of stakeholders is insufficient. In this study, in order to quantitatively derive the priorities of performance improvement factors for K1 tanks and K2 tanks, a survey was conducted with experts with experience in tank development, and the preface data was analyzed using AHP, scoring method, and TOPSIS methods. As a result, priorities were quantitatively derived. The results of this study are expected to be used as decision-making indicators for stakeholders in the future weapon system development and performance improvement stage.

A Desirability Function-Based Multi-Characteristic Robust Design Optimization Technique (호감도 함수 기반 다특성 강건설계 최적화 기법)

  • Jong Pil Park;Jae Hun Jo;Yoon Eui Nahm
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2023
  • Taguchi method is one of the most popular approaches for design optimization such that performance characteristics become robust to uncontrollable noise variables. However, most previous Taguchi method applications have addressed a single-characteristic problem. Problems with multiple characteristics are more common in practice. The multi-criteria decision making(MCDM) problem is to select the optimal one among multiple alternatives by integrating a number of criteria that may conflict with each other. Representative MCDM methods include TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution), GRA(Grey Relational Analysis), PCA(Principal Component Analysis), fuzzy logic system, and so on. Therefore, numerous approaches have been conducted to deal with the multi-characteristic design problem by combining original Taguchi method and MCDM methods. In the MCDM problem, multiple criteria generally have different measurement units, which means that there may be a large difference in the physical value of the criteria and ultimately makes it difficult to integrate the measurements for the criteria. Therefore, the normalization technique is usually utilized to convert different units of criteria into one identical unit. There are four normalization techniques commonly used in MCDM problems, including vector normalization, linear scale transformation(max-min, max, or sum). However, the normalization techniques have several shortcomings and do not adequately incorporate the practical matters. For example, if certain alternative has maximum value of data for certain criterion, this alternative is considered as the solution in original process. However, if the maximum value of data does not satisfy the required degree of fulfillment of designer or customer, the alternative may not be considered as the solution. To solve this problem, this paper employs the desirability function that has been proposed in our previous research. The desirability function uses upper limit and lower limit in normalization process. The threshold points for establishing upper or lower limits let us know what degree of fulfillment of designer or customer is. This paper proposes a new design optimization technique for multi-characteristic design problem by integrating the Taguchi method and our desirability functions. Finally, the proposed technique is able to obtain the optimal solution that is robust to multi-characteristic performances.

A Multi-Phase Decision Making Model for Supplier Selection Under Supply Risks (공급 리스크를 고려한 공급자 선정의 다단계 의사결정 모형)

  • Yoo, Jun-Su;Park, Yang-Byung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.112-119
    • /
    • 2017
  • Selecting suppliers in the global supply chain is the very difficult and complicated decision making problem particularly due to the various types of supply risk in addition to the uncertain performance of the potential suppliers. This paper proposes a multi-phase decision making model for supplier selection under supply risks in global supply chains. In the first phase, the model suggests supplier selection solutions suitable to a given condition of decision making using a rule-based expert system. The expert system consists of a knowledge base of supplier selection solutions and an "if-then" rule-based inference engine. The knowledge base contains information about options and their consistency for seven characteristics of 20 supplier selection solutions chosen from articles published in SCIE journals since 2010. In the second phase, the model computes the potential suppliers' general performance indices using a technique for order preference by similarity to ideal solution (TOPSIS) based on their scores obtained by applying the suggested solutions. In the third phase, the model computes their risk indices using a TOPSIS based on their historical and predicted scores obtained by applying a risk evaluation algorithm. The evaluation algorithm deals with seven types of supply risk that significantly affect supplier's performance and eventually influence buyer's production plan. In the fourth phase, the model selects Pareto optimal suppliers based on their general performance and risk indices. An example demonstrates the implementation of the proposed model. The proposed model provides supply chain managers with a practical tool to effectively select best suppliers while considering supply risks as well as the general performance.

Localization of solar-hydrogen power plants in the province of Kerman, Iran

  • Mostafaeipour, Ali;Sedaghat, Ahmad;Qolipour, Mojtaba;Rezaei, Mostafa;Arabnia, Hamid R.;Saidi-Mehrabad, Mohammad;Shamshirband, Shahaboddin;Alavi, Omid
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.179-205
    • /
    • 2017
  • This research presents an in-depth analysis of location planning of the solar-hydrogen power plants for electricity production in different cities situated in Kerman province of Iran. Ten cities were analyzed in order to select the most suitable location for the construction of a solar-hydrogen power plant utilizing photovoltaic panels. Data envelopment analysis (DEA) methodology was applied to prioritize cities for installing the solar-hydrogen power plant so that one candidate location was selected for each city. Different criteria including population, distance to main road, flood risk, wind speed, sunshine hours, air temperature, humidity, horizontal solar irradiation, dust, and land costare used for the analysis. From the analysis, it is found that among the candidates' cities, the site of Lalezar is ranked as the first priority for the solar-hydrogen system development. A measure of validity is obtained when results of the DEA method are compared with the results of the technique for ordering preference by similarity to ideal solution (TOPSIS). Applying TOPSIS model, it was found that city of Lalezar ranked first, and Rafsanjan gained last priority for installing the solar-hydrogen power plants. Cities of Baft, Sirjan, Kerman, Shahrbabak, Kahnouj, Shahdad, Bam, and Jiroft ranked second to ninth, respectively. The validity of the DEA model is compared with the results of TOPSIS and it is demonstrated that the two methods produced similar results. The solar-hydrogen power plant is considered for installation in the city of Lalezar. It is demonstrated that installation of the proposed solar-hydrogen system in Lalezar can lead to yearly yield of 129 ton-H2 which covers 4.3% of total annual energy demands of the city.

Risk Assessment of Marine LPG Engine Using Fuzzy Multicriteria HAZOP Technique (퍼지 다기준 HAZOP 기법을 이용한 해상용 LPG 엔진의 위험성 평가)

  • Siljung Yeo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.238-247
    • /
    • 2023
  • Liquefied petroleum gas (LPG) is an attractive fuel for ships considering its current technology and economic viability. However, safety guidelines for LPG-fueled ships are still under development, and there have been no cases of applying LPG propulsion systems to small and medium-sized ships in Korea. The purpose of this study was to perform an objective risk assessment for the first marine LPG engine system and propose safe operational standards. First, hazard and operability (HAZOP) analysis was used to divide the engine system into five nodes, and 58 hazards were identified. To compensate for the subjectivity of qualitative evaluation using HAZOP analysis, fuzzy set theory was used, and additional risk factors, such as detectability and sensitivity, were included to compare the relative weights of the risk factors using a fuzzy analytical hierarchy process. As a result, among the five risk factors, those with a major impact on risk were determined to be the frequency and severity. Finally, the fuzzy technique for order of preference by similarity to ideal solution (TOPSIS) was applied to select the risk rank more precisely by considering the weights of the risk factors. The risk level was divided into 47 groups, and the major hazard during the operation of the engine system was found through the analysis to be gas leakage during maintenance of the LPG supply line. The technique proposed can be applied to various facilities, such as LPG supply systems, and can be utilized as a standard procedure for risk assessment in developing safety standards for LPG-powered ships.

New Flood Hazard Mapping using Runoff Mechanism on Gamcheon Watershed (유출메커니즘을 활용한 감천유역에서의 새로운 홍수위험지도 작성)

  • Kim, Tae Hyung;Han, Kun Yeun;Park, Jun Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1011-1021
    • /
    • 2016
  • This study performs the potential flood hazard analysis by applying elevation data, soil data and land use data. The susceptibility maps linked to elevation, soil and land use are combined to develop the new types of flood hazard map such as runoff production map and runoff accumulation map. For the development of the runoff production map, land use, soil thickness, permeability, soil erosion and slope data are used as runoff indices. For the runoff accumulation map, elevation, knick point and lowland analysis data are used. To derive an integrated type of flood potential hazard, a TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) technique, which is widely applied in MCDM (Multi-Criteria Decision Making) process, is adopted. The indices applied to the runoff production and accumulation maps are considered as criteria, and the cells of analysis area are considered as alternatives for TOPSIS technique. The model is applied to Gamcheon watershed to evaluate the flood potential hazards. Validation with large scale data shows the good agreements between historical data and runoff accumulation data. The analysis procedure presented in this study will contribute to make preliminary flood hazard map for the public information and for finding flood mitigation measures in the watershed.

Selection of Performance of Bias Correction using TOPSIS method (TOPSIS 방법을 이용한 편의 보정 방법 선정)

  • Song, Young Hoon;Chung, Eun Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.306-306
    • /
    • 2019
  • 전지구적 기온상승으로 인해 미래기후의 관한 연구가 중요시 되고 있다. 위와 같은 현상으로 인하여 다양한 기후변화 연구가 진행되고 있다. 미래기후 연구에는 GCM (General Circulation Model) 모의 결과가 이용된다. 격자 자료로 구성된 GCM은 연구 지점으로 지역적 상세화와 연구지역의 관측자료 사이의 편이 보정(bias correction)이 필수적이다. 위와 같은 근거로 편이 보정 방법의 선택은 매우 중요하며 편의 보정의 방법에 따라서 결과가 다르게 도출될 수 있다. 또한 국내외 연구에서는 다양한 상세화 기법과 편이 보정 기법을 분석 및 평가하는 연구가 진행되고 있으며, 편의 기법 중 대표적인 기법인 Quantile mapping과 Random Forest 기법이 있다. Quantile mapping 기법은 GCM의 과거 모의 데이터와의 편이 보정에 있어서 우수하게 나타났으나, GCM 데이터의 미래 예측 기간(2010년~2018년)까지의 데이터에서는 극한 강수를 정량적으로 분석 가능한 Random Forest 기법이 편이 보정 과정에서 성능이 우수할 것으로 판단된다. 본 연구에서는 우리나라 21개 관측소를 기준으로 총 4개의 GCM(GISS, CSIRO, CCSM4,MIROC5)의 과거 기간 자료(1970년~2005년)를 실제 관측소에서 관측된 강수량을 편의 보정하는 방법에 있어서 편의 보정 기법의 성능을 비교한 결과와 GCM 미래 예측 기간 자료(2010년~2018년)에서의 편의 보정 기법의 성능 결과를 비교하였다. 이를 토대로 편이 보정 기법의 결과를 6개의 평가지수를 이용하여 정량적으로 분석하였으며, 다기준의사결정기법인 TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution)를 이용하여 편이 보정기법들의 성능에 있어서 우선순위를 선정하였다. 본 연구에서 편이 보정 방법으로 Quantile mapping 방법을 사용했으며, Quantile mapping의 기법으로는 비모수 변환법(non-parametric transformation)과 분포기반 변환법(distribution derived transformation)이 사용되었다. 또한 머신러닝 방법 중 하나인 Random Forest 방법을 동시에 사용하여 결과를 비교하였다. 또한 GCM 자료가 격자식으로 제공하고 있기 때문에 관측소 강수량도 공간적으로 환산하여야 하는데, 본 연구에서는 역거리 가중치법(inverse distance weighting, IDW) 방법을 이용하였다.

  • PDF

Comparison of Water Resources Vulnerability Index of South and North Korea Using TOPSIS (TOPSIS를 이용한 남·북한 지역별 기후변화에 대한 수자원 취약성 지수 비교)

  • Song, Jae Yeol;Chung, Eun-Sung;Jeong, Sunghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.643-643
    • /
    • 2015
  • 최근 북한의 수자원에 대한 관심과 연구가 활발히 이루어지고 있다. 또한, 수자원 취약성과 지속가능한 개발과 관련된 지수에 대한 연구도 꾸준히 이루어지고 있으며, 이 지수를 이용하여 현재 또는 미래의 수자원 취약성을 판단하고 대비하고 있다. 본 연구는 기상청, 통계청, 환경부에서 제공하는 자료 중에서 북한의 지역별 자료의 확보 가능한 자료를 대상으로 기후변화에 대한 기후노출, 민감도, 적응능력을 나타내는 지표들을 선정하여 남한과 북한의 26개 광역자치단체에 대하여 수자원 취약성 순위를 도출하였다. 기후변화를 고려한 지표들은 각각 홍수피해와 물부족을 반영하는 지표인 일최대강수량, 일강수량이 80mm 이상인 날의 수, 연최대 연속강우일수, 3일주기 최대 강수량, 6-9월 강수량, 12-2월 증발산량, 3-5월 증발산량, 12-2월 강수량, 3-5월 강수량, 연속적인 무강우일 수의 최대값, 총인구, 인구밀도를 선택하였으며, 변수들의 가중치 결정은 객관적 가중치 산정 방법인 Shannon의 entropy 기법과 주관적 가중치인 환경부(2012)에서 전문가를 대상으로 유도한 가중치를 적용하여 치수와 이수분야에 대한 취약성을 각각 평가하였다. 수자원 취약성의 정량적 평가를 위하여 TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) 기법을 적용하여 남 북한 지역별 수자원 취약성을 지수화하고 취약성 순위를 도출하였다. 산정된 수자원 취약성 지수가 낮을수록 취약함의 정도가 심각한 것으로 정의할 수 있으며, 연구결과 남 북한을 통틀어서 서울이 가장 취약한 지역으로 나타났으며, 치수 분야에서는 북한의 양강도가 취약성이 낮은 것으로 나타났고, 이수분야에서는 북한의 양강도와 남한의 제주도가 취약성이 낮은 것으로 나타났다. 따라서 본 연구는 남 북한의 지역별 취약성 순위를 통해 우리나라와 북한 수자원의 현황을 제시하며, 미래의 국가 수자원 계획 수립 및 대책을 제시할 수 있는 자료로 활용할 수 있을 것이다.

  • PDF

Selection of Representative GCM Based on Performance Indices (성능지표 기반 대표 GCM 선정)

  • Song, Young Hoon;Chung, Eun Sung;Mang, Ngun Za Luai
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.101-101
    • /
    • 2019
  • 전 지구적 기온상승으로 인한 기후변화는 사회적, 수문학적, 다양한 분야에 영향을 미친다. 또한 IPCC(Intergovernmental Panel on Climate Change)의 보고서에 따르면 미래에도 지속적으로 기온상승이 예상되며, 이러한 현상은 인류의 삶에 큰 영향을 미칠것으로 예상된다. 또한 수자원 및 관련 분야에서도 기온 상승에 따른 강수량, 강수의 주기 변동, 극한 기후사상의 심도(severity)와 빈도 변화에 따른 다양한 연구가 진행되고 있으며, 미래의 강우량과 온도를 예측하는 기후변화연구에서는 다양한 기후모형을 고려하여 분석한다. 하지만 모든 기후모형이 우리나라에 적합한 것은 아니므로 과거 기후를 모의한 결과를 토대로 성능이 뛰어난 모형의 결과에 더 높은 가중치를 주고 미래를 예측하는 연구가 활발히 진행되고 있다. 일반적으로 기후모형으로 GCM (General Circulation Model) 모의 결과가 이용되는데 우리나라에 대한 GCM 결과의 정확성을 분석하는 연구는 부족한 실정이다. 따라서 본 연구에서는 21개의 GCM을 대상으로 과거 모의 자료(1970년~2005년)를 실제 관측소에서 관측된 강수량과 비교하여 각 GCM들의 성능을 평가하고 이를 토대로, GCM들의 우선순위를 선정하였다. 또한 격자 기반 GCM 결과를 IDW (Inverse Distance Weighted) 방법을 사용하여 기상관측소로 지역적 상세화를 수행하였으며, GCM과 관측자료 사이의 편이를 보정하기 위해 6가지의 Quantile Mapping 방법과 Random Forest 기법을 사용하였다. 또한 편이 보정 기법 중 성능이 좋은 기법을 선택하여 관측소에 적용하였다. 편이 보정된 GCM 모의결과에 대한 성능을 토대로 우수한 GCM 순위를 도출하기 위해 다기준의사결정기법 중 하나인 TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)를 이용하였다. 그리고 GCM의 전망기간인 2010년부터 2018년까지의 Machine learning 방법과 Quantile mapping의 기법을 비교 및 성능이 우수한 편이 보정 방법을 선택한 후 전망기간 동안의 GCM 성능의 우선순위를 선정하였다.

  • PDF