• Title/Summary/Keyword: tear properties

Search Result 241, Processing Time 0.021 seconds

Mechanical Properties of Cotton Fabric Treated with Succinic Acid - Tear Strength - (Succinic Acid 처리면포의 역학 특성 - 인열강도 -)

  • Kang, In-Sook;Bae, Hyun-Sook
    • Textile Coloration and Finishing
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Polycarboxylics acids are used as crosslinking agents for cotton cellulose to produce durable finished press cotton fabric. It has been observed that the strength of the cotton fabric treated with polycarboxylic acids showed significant reduction as a result of the crosslinking process. The effect of acid-catalyzed depolymerization on the tear strength of cotton fabric is investigated by evaluating the cotton fabric treated by succinic acid, which does not crosslink cotton cellulose and form little ester on the cotton fabric. We find that the tear strength of cotton fabric treated with succinic acid decreases at elevated temperature due to acid-catalyzed depolymerization of cellulose. The magnitude of fabric strength reduction increases as the acid concentration increases. At a constant acid concentration, it increases as the curing temperature and time increases. It decreases as the pH of the acid solution increases. We also find that the dissociation constant of an acid also has a significant effect on the fabric strength reduction. The magnitude of fabric tear strength reduction increases as the acid dissociation constant decreases.

Construction of sports engineering structures with high resistance to improve the quality of sports training

  • Lin He;Qiyuan Deng
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.211-220
    • /
    • 2023
  • The textile industry has benefited from nanotechnology in various fields of application as the use of nanomaterials, and nanotechnology is multiplying. Nanoparticles can increase the performance of textiles by up to 100 times when used in finishing, coating, and dyeing techniques, providing them with capabilities they did not previously possess. Nanotechnology is used in the textile chemical industry to produce sports mats with stain resistance, flame resistance, wrinkle resistance, moisture management, antimicrobial quality, and UV protection. The incorporation of nanomaterials into fabrics can have a significant effect on their properties, including shrinkage, strength, electrical conductivity, and flammability. Various inventions and innovations may result from nano-processed textiles in the future, thus leading to the advancement of science. This article presents the construction of sports engineering structures with high resistance to improve the quality of sports training. The mechanical properties of sports mats are improved with the help of nanotechnology. Strength, elasticity, and tear resistance are among these properties. This method enables the production of elastic, durable, and tear-resistant sports mats.

Physical Properties of Cotton Fabric Treated with BTCA and P olyalkyleneoxide-modified amino-functional silicone (BTCA와 실리콘 처리 면직물의 물리적 성질)

  • 남승현;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.4
    • /
    • pp.525-534
    • /
    • 1998
  • Cotton fabrics were finished with mixture of BTCA(1,2,3,4,-butanetetracarboxylic acid) and polyalkyleneoxide-modified amino-functional silicone by pad-dry-cure process to achieve better DP performance with a higher retention of physical properties as compared to those of finished with BTCA alone. The results indicated that BTCA improved the wrinkle recovery but reduced significantly the tensile and tear strength of the treated fabrics. Whereas silicone imparted a lower wrinkle recovery, a lower loss of tensile strength than BTCA, in addition improved considerably the tear strength owing to reduction in inter-fiber and/or inter-yarn frictional forces. The concentration and curing temperature needed to enhance physical properties were as follows; for BTCA treatments 6%, at 18$0^{\circ}C$, for silicone treatments 1% at 14$0^{\circ}C$. This optimum concentration of silicone was observed by using the mixture of BTCA and silicone. The wrinkle recovery and DP rating of cotton fabrics treated with mixture of 4% BTCA and 1% silicone at a curing temperature of 17$0^{\circ}C$ was similar to those of treated with 6% BTCA at a curing temperature of 18$0^{\circ}C$, and other performance properties observed were; an increase in tensile strength, extension, toughness, abrasion resistance and moisture regain due to the reduction of BTCA concentration and curing temperature, futhermore an improvement in bending and surface properties due to the lubricating effect of silicone. On the other hand 1% aqueous silicone solution showed the lowest surface tension. Such nonionic surface activity resulted in a more uniform and rapid deposition of BTCA on the fiber or fabric.

  • PDF

Emulsification of Chloroprene Rubber (CR) by Interfacial Chemistry; Stabilization and Enhancement of Mechanical Properties

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.257-265
    • /
    • 2017
  • In this work, CR (Chloroprene Rubber) was emulsified by phase-inversion emulsification with nonionic surfactants (NP-1025, LE-1017, and OP-1019) and an anionic surfactant (SDBS; sodium dodecylbenzenesulfonate), and its stabilization was investigated through a study of its adsorption characteristics, zeta potential, and flow behavior. As the amount of the mixed surfactant increased, the droplet size decreased, resulting in the increase of viscosity. In particular, a CR emulsion with a lower absorbance in the UV spectrum exhibited the highest zeta potential. The results of this experiment showed that the CR emulsion prepared using (LE-1017) and SDBS was the most stable. In this study, calcium hydroxide and aluminum hydroxide were added to enhance the mechanical properties of the CR emulsion, and the relationship between tensile strength, tear strength and surface free energy were investigated. The tensile and tear strengths of the CR emulsion incresed as the amount of calcium hydroxide and aluminum hydroxide increased. The highest tensile and tear strengths and surface free energy were observed for additions of 1.0% calcium hydroxide and 0.80% aluminum hydroxide, respectively. It was concluded that the interfacial bonding strength was improved by the even dispersion of calcium hydroxide and aluminum hydroxide in the CR emulsion.

Improvement of Papermaking Properties of Recycled Fiber with Enzyme (효소처리에 의한 재생섬유의 제지적성 개선)

  • 최윤성;원종명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.30-37
    • /
    • 2001
  • The effects of enzymatic treatment of recycled fiber were investigated to obtain the basic informations which can be used to improve the papermaking properties of recycled fiber. The recycled fibers were prepared by the repeated handsheet making and disintegrating of hardwood of hardwood and softwood kraft pulp. Novozym 342, Dinimax and Pulpzyme HC were used for enzymatic treatment. The change of fiber length distribution, freeness, contact angle and crystallinity of pulp were measured. The brightness, opacity, breaking and tear index of paper were also measured. The enzymatic treatment decreased long fiber fraction of recycled hardwood fiber, but increased long fiber fraction of recycled softwood fiber. Freeness was decreased with 0.1% enzyme and then increased again with the increase of th enzyme dosage. The improvement of flexibility of recycled fiber was obtained through the decrease of contact angle that is resulted from the decrease of crystallinity of fiber. Brightness and opacity were affected by the type of pulp and enzyme, and dosage of enzyme. Breaking length of recycled hardwood fiber was improved with enzyme treatment, but breaking length of recycled softwood fiber was decreased except for 0.01% Pulpzyme treatment. Tear index was decreased with enzymatic treatment and the lowest decrease was observed with the treatment to Pulpzyme.

  • PDF

Manufacture of Environmentally-friendly Flame-retardant Paper with Polyethylene Terephthalate (PET) Short Cut Fiber (PET 섬유를 사용한 친환경 난연지 제조방법에 대한 연구)

  • Kim, Ji-Seop;Lee, Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.14-20
    • /
    • 2012
  • In this paper, the flame-retardant wall paper was successfully prepared with recycled polyethylene terephthalate (PET) short cut fiber with flame-retardant property and wood pulp using polyvinyl alcohol (PVA) as binder followed by treatment of non-halogen flame retardant. Physical properties such as formation index, tensile strength, elongation, and burst strength increased as defibrillation increased except tear strength. Bulk increased but formation index, tensile strength, elongation and burst strength decreased along with addition of PET short cut fiber. It was also found that tear strength rose significantly up to 30% of PET short cut fiber and then declined (fell) rapidly. As addition level of PVA increased tensile strength, elongation and burst strength increased, but tear strength decreased slightly. Addition of 20% of PET short cut fiber and 13% of PVA provided the flame-retardant wall paper with both improved flameproofing and physical properties.

Mechanical Properties of Polyurethane Foam Prepared from Prepolymer with Resin Premix (Prepolymer와 Resin Premix로 부터 제조된 Polyurethane Foam의 기계적 성질)

  • Kim, Tae Sung;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.241-248
    • /
    • 2013
  • Polyester type polyurethane foam has low hydrolysis resistance. It was overcome with addition of acrylic polyol by quasi prepolymer method. Tensile strength and hardness of polyurethane foam contained acrylic polyol was increased with increasing of acrylic polyol contents. But split tear strength and tear strength was slightly changed. Hydrolysis resistance of polyurethane foam was measured by loss % of tensile strength. It was improved with increasing of acrylic polyol contents from 25.5g to 102g.

Comparison of mechanical properties and flowability of dental impression materials (치과용 인상재의 기계적 물성 및 흐름성 비교)

  • Kim, Ji-Yeob;Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.39-43
    • /
    • 2016
  • The purpose of this study is to determine and compare the mechanical and flow properties of polyvinylsiloxane impression pastes. Twelve polyvinylsiloxane impression materials were used. As mechanical properties, tensile strength and tear resistance were measured. Impression materials are subjected to tensile stresses when they are removed from the oral cavity and from stone models and tear resistance is the ability of the material to resist tearing under a tensile stress. Flow is dependent on the ability of the material to resist shear forces. Flow tests were performed to determine the handling characteristics and was measured using a shark fin testing device. An impression material must be able to penetrate the narrow subgingival sulcus and tight interproximal areas. Therefore, it must be able to resist the shear forces as it is pushed between tooth and gingival walls. It is necessary to understand the properties of interocclusal recording materials and is considered that the results obtained in this study will provide guideline information for the manufacturing of impression materials and for selecting appropriate impression materials.

  • PDF

Starch Treatment for the Improvement of Physical Properties of Hanji( II ) -Relationships between the physical properties and the surface characteristics of Hanji treated with various starches- (한지의 강도적 성질 개선을 위한 전분류 처리 ( 제 2 보 ) -전분처리 한지의 표면과 강도적 성질과의 관계 -)

  • Beak, Seung-Hee;Yoon, Seung-Lak;Jo, Jong-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.2 s.115
    • /
    • pp.22-34
    • /
    • 2006
  • To improve the mechanical properties of Hanji, starches such as maize, konyaku, and wheat powders were added at various concentrations in the manufacturing processes of Hanji. The effect of starches on the physical properties of Hanji was as follows. Filling rates of surface of hanji were increased with the increase of the concentration of starch. Hanji surface were completely filled at the 3.0% konyaku treatment. Konyaku powder showed higher filling rates than maize and wheat powder. The breaking length was increased with the increase of filling rates. Konyaku powder showed the highest breaking length: Tear index of hanji treated with maize and wheat powder were a little improved but that of hanji treated with konyaku powder were a little decreased compared to non-treated hanji. In conclusion, starch treatment showed the increase of the breaking length, but no effect on tear index.

Properties of Hanji Wallpaper by Incorporating Ceramics from Wood and Rice-husk (톱밥과 왕겨로 제조된 세라믹을 첨가한 한지벽지의 물성)

  • Lim, Hyun-A;Oh, Seung-Won;Kang, Jin-Ha
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.1
    • /
    • pp.23-32
    • /
    • 2006
  • This study was carried out to explore a new application of traditional Hanji and obtain fundamental properties for producing Hanji wallpaper by incorporating ceramics from wood and rice-husk as an interior building material. The results of properties determined were summarized as follows: The addition of ceramics in Hanji paper reduced its apparent density, but increased bulk density due to the ceramic particles distributed on the surface and inside the fiber of Hanji wallpapers. In particular, woodceramic particles were specifically distributed on the fiber surface, while particles of rice-husk ceramics were permeated into the inside surface of fibers. The density of rice-husk ceramics were greater than that of woodceramics. The physical properties of Hanji wallpapers, such as breaking strength, wet breaking strength, burst strength, tear index and folding endurance were deteriorated with the addition of ceramics. However, the addition of woodceramics in the Hanji wallpaper resulted in better strength in most cases than that of rice-husk ceramics, except tear strength. Therefore, an optimum addition level of woodceramics into the wallpaper was found to be 5% on the basis of intensity. The addition of ceramics also prolonged the combustion time because it lowered air permeability and brightness of the wallpaper.

  • PDF