• Title/Summary/Keyword: teaching-learning optimization algorithm

Search Result 30, Processing Time 0.029 seconds

Optimum static balancing of a robot manipulator using TLBO algorithm

  • Rao, R. Venkata;Waghmare, Gajanan
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.13-31
    • /
    • 2018
  • This paper presents the performance of Teaching-Learning-Based Optimization (TLBO) algorithm for optimum static balancing of a robot manipulator. Static balancing of robot manipulator is an important aspect of the overall robot performance and the most demanding process in any robot system to match the need for the production requirements. The average force on the gripper in the working area is considered as an objective function. Length of the links, angle between them and stiffness of springs are considered as the design variables. Three robot manipulator configurations are optimized. The results show the better or competitive performance of the TLBO algorithm over the other optimization algorithms considered by the previous researchers.

Design of Hybrid Magnetic Levitation System using Intellignet Optimization Algorithm (지능형 최적화 기법 이용한 하이브리드 자기부상 시스템의 설계)

  • Cho, Jae-Hoon;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1782-1791
    • /
    • 2017
  • In this paper, an optimal design of hybrid magnetic levitation(Maglev) system using intelligent optimization algorithms is proposed. The proposed maglev system adopts hybrid suspension system with permanent-magnet(PM) and electro magnet(EM) to reduce the suspension power loss and the teaching-learning based optimization(TLBO) that can overcome the drawbacks of conventional intelligent optimization algorithm is used. To obtain the mathematical model of hybrid suspension system, the magnetic equivalent circuit including leakage fluxes are used. Also, design restrictions such as cross section areas of PM and EM, the maximum length of PM, magnetic force are considered to choose the optimal parameters by intelligent optimization algorithm. To meet desired suspension power and lower power loss, the multi object function is proposed. To verify the proposed object function and intelligent optimization algorithms, we analyze the performance using the mean value and standard error of 10 simulation results. The simulation results show that the proposed method is more effective than conventional optimization methods.

Teaching-learning-based strategy to retrofit neural computing toward pan evaporation analysis

  • Rana Muhammad Adnan Ikram;Imran Khan;Hossein Moayedi;Loke Kok Foong;Binh Nguyen Le
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • Indirect determination of pan evaporation (PE) has been highly regarded, due to the advantages of intelligent models employed for this objective. This work pursues improving the reliability of a popular intelligent model, namely multi-layer perceptron (MLP) through surmounting its computational knots. Available climatic data of Fresno weather station (California, USA) is used for this study. In the first step, testing several most common trainers of the MLP revealed the superiority of the Levenberg-Marquardt (LM) algorithm. It, therefore, is considered as the classical training approach. Next, the optimum configurations of two metaheuristic algorithms, namely cuttlefish optimization algorithm (CFOA) and teaching-learning-based optimization (TLBO) are incorporated to optimally train the MLP. In these two models, the LM is replaced with metaheuristic strategies. Overall, the results demonstrated the high competency of the MLP (correlations above 0.997) in the presence of all three strategies. It was also observed that the TLBO enhances the learning and prediction accuracy of the classical MLP (by nearly 7.7% and 9.2%, respectively), while the CFOA performed weaker than LM. Moreover, a comparison between the efficiency of the used metaheuristic optimizers showed that the TLBO is a more time-effective technique for predicting the PE. Hence, it can serve as a promising approach for indirect PE analysis.

An Optimized Deep Learning Techniques for Analyzing Mammograms

  • Satish Babu Bandaru;Natarajasivan. D;Rama Mohan Babu. G
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.39-48
    • /
    • 2023
  • Breast cancer screening makes extensive utilization of mammography. Even so, there has been a lot of debate with regards to this application's starting age as well as screening interval. The deep learning technique of transfer learning is employed for transferring the knowledge learnt from the source tasks to the target tasks. For the resolution of real-world problems, deep neural networks have demonstrated superior performance in comparison with the standard machine learning algorithms. The architecture of the deep neural networks has to be defined by taking into account the problem domain knowledge. Normally, this technique will consume a lot of time as well as computational resources. This work evaluated the efficacy of the deep learning neural network like Visual Geometry Group Network (VGG Net) Residual Network (Res Net), as well as inception network for classifying the mammograms. This work proposed optimization of ResNet with Teaching Learning Based Optimization (TLBO) algorithm's in order to predict breast cancers by means of mammogram images. The proposed TLBO-ResNet, an optimized ResNet with faster convergence ability when compared with other evolutionary methods for mammogram classification.

A Hybrid Optimized Deep Learning Techniques for Analyzing Mammograms

  • Bandaru, Satish Babu;Deivarajan, Natarajasivan;Gatram, Rama Mohan Babu
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.73-82
    • /
    • 2022
  • Early detection continues to be the mainstay of breast cancer control as well as the improvement of its treatment. Even so, the absence of cancer symptoms at the onset has early detection quite challenging. Therefore, various researchers continue to focus on cancer as a topic of health to try and make improvements from the perspectives of diagnosis, prevention, and treatment. This research's chief goal is development of a system with deep learning for classification of the breast cancer as non-malignant and malignant using mammogram images. The following two distinct approaches: the first one with the utilization of patches of the Region of Interest (ROI), and the second one with the utilization of the overall images is used. The proposed system is composed of the following two distinct stages: the pre-processing stage and the Convolution Neural Network (CNN) building stage. Of late, the use of meta-heuristic optimization algorithms has accomplished a lot of progress in resolving these problems. Teaching-Learning Based Optimization algorithm (TIBO) meta-heuristic was originally employed for resolving problems of continuous optimization. This work has offered the proposals of novel methods for training the Residual Network (ResNet) as well as the CNN based on the TLBO and the Genetic Algorithm (GA). The classification of breast cancer can be enhanced with direct application of the hybrid TLBO- GA. For this hybrid algorithm, the TLBO, i.e., a core component, will combine the following three distinct operators of the GA: coding, crossover, and mutation. In the TLBO, there is a representation of the optimization solutions as students. On the other hand, the hybrid TLBO-GA will have further division of the students as follows: the top students, the ordinary students, and the poor students. The experiments demonstrated that the proposed hybrid TLBO-GA is more effective than TLBO and GA.

A new control approach for seismic control of buildings equipped with active mass damper: Optimal fractional-order brain emotional learning-based intelligent controller

  • Abbas-Ali Zamani;Sadegh Etedali
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.305-315
    • /
    • 2023
  • The idea of the combination of the fractional-order operators with the brain emotional learning-based intelligent controller (BELBIC) is developed for implementation in seismic-excited structures equipped with active mass damper (AMD). For this purpose, a new design framework of the mentioned combination namely fractional-order BEBIC (FOBELBIC) is proposed based on a modified-teaching-learning-based optimization (MTLBO) algorithm. The seismic performance of the proposed controller is then evaluated for a 15-story building equipped with AMD subjected to two far-field and two near-field earthquakes. An optimal BELBIC based on the MTLBO algorithm is also introduced for comparison purposes. In comparison with the structure equipped with a passive tuned mass damper (TMD), an average reduction of 44.7% and 42.8% are obtained in terms of the maximum absolute and RMS top floor displacement for FOBELBIC, while these reductions are obtained as 30.4% and 30.1% for the optimal BELBIC, respectively. Similarly, the optimal FOBELBIC results in an average reduction of 42.6% and 39.4% in terms of the maximum absolute and RMS top floor acceleration, while these reductions are given as 37.9% and 30.5%, for the optimal BELBIC, respectively. Consequently, the superiority of the FOBELBIC over the BELBIC is concluded in the reduction of maximum and RMS seismic responses.

A fast and robust procedure for optimal detail design of continuous RC beams

  • Bolideh, Ameneh;Arab, Hamed Ghohani;Ghasemi, Mohammad Reza
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.313-327
    • /
    • 2019
  • The purpose of the present study is to present a new approach to designing and selecting the details of multidimensional continuous RC beam by applying all strength, serviceability, ductility and other constraints based on ACI318-14 using Teaching Learning Based Optimization (TLBO) algorithm. The optimum reinforcement detailing of longitudinal bars is done in two steps. in the first stage, only the dimensions of the beam in each span are considered as the variables of the optimization algorithm. in the second stage, the optimal design of the longitudinal bars of the beam is made according to the first step inputs. In the optimum shear reinforcement, using gradient-based methods, the most optimal possible mode is selected based on the existing assumptions. The objective function in this study is a cost function that includes the cost of concrete, formwork and reinforcing steel bars. The steel used in the objective function is the sum of longitudinal and shear bars. The use of a catalog list consisting of all existing patterns of longitudinal bars based on the minimum rules of the regulation in the second stage, leads to a sharp reduction in the volume of calculations and the achievement of the best solution. Three example with varying degrees of complexity, have been selected in order to investigate the optimal design of the longitudinal and shear reinforcement of continuous beam.

Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm

  • Grzywinski, Maksym;Selejdak, Jacek;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.747-753
    • /
    • 2019
  • Metaheuristic algorithm is used to solve the weight minimization problem of truss structures considering shape, and sizing design variables. The cross-sectional areas of the line element in trusses are the design variables for size optimization and the changeable joint coordinates are the shape optimization used in this study. The design of plane and spatial truss structures are optimized by metaheuristic technique named Teaching-Learning-Based Optimization (TLBO). Finite element analyses of structures and optimization process are carried out by the computer program visually developed by the authors coded in MATLAB. The four benchmark problems (trusses 2D ten-bar, 3D thirty-seven-bar, 3D seventy-two-bar and 2D two-hundred-bar) taken from literature are optimized and the optimal solution compared the results given by previous studies.

A multi-objective decision making model based on TLBO for the time - cost trade-off problems

  • Eirgash, Mohammad A.;Togan, Vedat;Dede, Tayfun
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.139-151
    • /
    • 2019
  • In a project schedule, it is possible to reduce the time required to complete a project by allocating extra resources for critical activities. However, accelerating a project causes additional expense. This issue is addressed by finding optimal set of time-cost alternatives and is known as the time-cost trade-off problem in the literature. The aim of this study is to identify the optimal set of time-cost alternatives using a multiobjective teaching-learning-based optimization (TLBO) algorithm integrated with the non-dominated sorting concept and is applied to successfully optimize the projects ranging from a small to medium large projects. Numerical simulations indicate that the utilized model searches and identifies optimal / near optimal trade-offs between project time and cost in construction engineering and management. Therefore, it is concluded that the developed TLBO-based multiobjective approach offers satisfactorily solutions for time-cost trade-off optimization problems.

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.