• 제목/요약/키워드: tea polyphenols

검색결과 81건 처리시간 0.023초

Antioxidative Effects and Anticancer Activities of Puer Tea Extract

  • ;;;유민
    • 대한의생명과학회지
    • /
    • 제16권4호
    • /
    • pp.265-269
    • /
    • 2010
  • Puer tea is a traditional beverage originating from Yunnan area of China. We have analyzed 11 different commercial tea brands provided by Daboo Culture and Art Center. This study was carried out to evaluate the contents of polyphenols, antibacterial activity, antioxidantive ability and physiological activities of extracts from Puer tea. The electron donating ability was ranged from 57.26~99.16% and SOD-like activity was ranged from 1.4~10.4%. The inhibitory effect on the growth of cancer cell lines was examined by MIT assay. The Puer tea extract exhibited the greatest inhibitory effect at the concentration of 2% for all cancer cells tested.

Protective Effects of Green Tea Polyphenol Against Renal Injury Through ROS-Mediated JNK-MAPK Pathway in Lead Exposed Rats

  • Wang, Haidong;Li, Deyuan;Hu, Zhongze;Zhao, Siming;Zheng, Zhejun;Li, Wei
    • Molecules and Cells
    • /
    • 제39권6호
    • /
    • pp.508-513
    • /
    • 2016
  • To investigate the potential therapeutic effects of polyphenols in treating Pb induced renal dysfunction and intoxication and to explore the detailed underlying mechanisms. Wistar rats were divided into four groups: control groups (CT), Pb exposure groups (Pb), Pb plus Polyphenols groups (Pb+PP) and Polyphenols groups (PP). Animals were kept for 60 days and sacrificed for tests of urea, serum blood urea nitrogen (BUN) and creatinine. Histological evaluations were then performed. In vitro studies were performed using primary kidney mesangial cells to reveal detailed mechanisms. Cell counting kit-8 (CCK-8) was used to evaluate cell viability. Pb induced cell apoptosis was measured by flow cytometry. Reactive oxygen species (ROS) generation and scavenging were tested by DCFH-DA. Expression level of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-1-${\beta}$ (IL-1-${\beta}$) and IL-6 were assayed by ELISA. Western blot and qPCR were used to measure the expression of ERK1/2, JNK1/2 and p38. Polyphenols have obvious protective effects on Pb induced renal dysfunction and intoxication both in vivo and in vitro. Polyphenols reduced Pb concentration and accumulation in kidney. Polyphenols also protected kidney mesangial cells from Pb induced apoptosis. Polyphenols scavenged Pb induced ROS generation and suppressed ROS-mediated ERK/JNK/p38 pathway. Downstream pro-inflammatory cytokines were inhibited in consistency. Polyphenol is protective in Pb induced renal intoxication and inflammatory responses. The underlying mechanisms lie on the antioxidant activity and ROS scavenging activity of polyphenols.

The Hypocholesterolemic Effect of Green Tea EGCG Was Not Mediated Via the Stimulation of the Low-Density Lipoprotein Receptor Gene Expression in Cholesterol-Fed Rats

  • Moon Hee-Jung;Kim Yangha
    • Nutritional Sciences
    • /
    • 제8권3호
    • /
    • pp.175-180
    • /
    • 2005
  • Green tea, which has high polyphenols amount, is thought to have hypocholesterolemic effects. The present study was performed to further examine the hypocholesterolemic action of green tea, especially (-) epigallocatechin gallate (EGCG) for its effect on diet-induced hypercholesterolemia in rats. Male Sprague-Dawley rats (n=15) were fed a green tea-free diet (control), $1.0\%$ green tea catechin (catechin) or $0.5\%$ green tea catechin EGCG for seven weeks. Hypercholesterolemia was induced by adding $1\%$ cholesterol and $0.5\%$ cholic acid to all diets. There was no difference in food intake and body weight gain among the groups. The green tea EGCG treatment led to a significant improvement in plasma levels of total cholesterol, low density lipoprotein (LDL)-cholesterol and high density lipoprotein (HDL)/LDL ratio (p<0.05). There was no significant effect on the plasma HDL-cholesterol level. The catechin treatment led to a 4.19-fold increase in the LDL-receptor mRNA level compared to the control, but the EGCG treatment did not affect the hepatic LDL-receptor mRNA level. Our results suggest that when blood cholesterol level is down-regulated by green tea EGCG, the LDL receptor gene-independent pathway may dominate the hypocholesterolemic action of EGCG.

Signal Transduction Pathways: Targets for Green and Black Tea Polyphenols

  • Bode, Ann M.;Dong, Zigang
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.66-77
    • /
    • 2003
  • Tea is one of the most popular beverages consumed in the world and has been demonstrated to have anti-cancer activity in animal models. Research findings suggest that the polyphenolic compounds, (-)-epigallocatechin-3-gallate, found primarily in green tea, and theaflavin-3,3'-digallate, a major component of black tea, are the two most effective anti-cancer factors found in tea. Several mechanisms to explain the chemopreventive effects of tea have been presented but others and we suggest that tea components target specific cell-signaling pathways responsible for regulating cellular proliferation or apoptosis. These pathways include signal transduction pathways leading to activator protein-1 (AP-1) and/or nuclear factor kappa B(NF-${\kappa}B$ ). AP-1 and NF-${\kappa}B$ are transcription factors that are known to be extremely important in tumor promoter-induced cell transformation and tumor promotion, and both are influenced differentially by the MAP kinase pathways. The purpose of this brief review is to present recent research data from other and our laboratory focusing on the tea-induced cellular signal transduction events associated with the MAP kinase, AP-1, and NF-${\kappa}B$ pathways.

Activation of Antioxidant-Response Element (ARE), Mitogen- Activated Protein Kinases (MAPKs) and Caspases by Major Green Tea Polyphenol Components during Cell Survival and Death

  • Chen, Chi;Yu, Rong;Owuor, Edward D.;Kong, A.NTony
    • Archives of Pharmacal Research
    • /
    • 제23권6호
    • /
    • pp.605-612
    • /
    • 2000
  • Green tea polyphenols (GTP) have been demonstrated to suppress tumorigenesis in several chemical-induced animal carcinogenesis models, and predicted as promising chemopreventive agents in human. Recent studies of GTP extracts showed the involvement of mitogen-activated protein kinases (MAPKs) in the regulation of Phase II enzymes gene expression and induction of apoptosis. In the current work we compared the biological actions of five green tea catechins: (1) induction of ARE reporter gene, (2) activation of MAP kinases, (3) cytotoxicity in human hepatoma HepG2-C8 cells, and (4) caspase activation in human cervical squamous carcinoma HeLa cells. For the induction of phase IIgene assay, (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG) potently induced antioxidant response element (ARE)-mediated luciferase activity, with induction observed at 25 $\mu\textrm{m}$with EGCG. The induction of ARE reporter gene appears to be structurally related to the 3-gallate group. Comparing the activation of MAPK by the five polyphenols, only EGCG showed potent activation of all three MAPKs (ERK, JNK and p38) in a dose- and time-dependent manner, whereas EGC activated ERK and p38. In the concentration range of 25 $\mu\textrm{m}$ to 1 mM, EGCG and ECG strongly suppressed HepG2-ARE-C8 cell-growth. To elucidate the mechanisms of green tea polyphenol-induced apoptosis, we measured the activation of an important cell death protein, caspase-3 induced by EGCG, and found that caspase-3 was activated in a dose- and time-dependent manner. Interestingly, the activation of caspase-3 was a relatively late event (peaked at 16 h), whereas activation of MAPKs was much earlier (peaked at 2 h). It is possible, that at low concentrations of EGCG, activation of MAPK leads to ARE-mediated gene expression including phase II detoxifying enzymes. Whereas at higher concentrations of EGCG, sustained activation of MAPKs such as JNK leads to apoptosis. These mechanisms are currently under investigation in our laboratory. As the most abundant catechin in GTP extract, we found that EGCG potently induced ARE-mediated gene expression, activated MAP kinase pathway, stimulated caspase-3 activity, and induced apoptosis. These mechanisms together with others, may contribute to the overall chemopreventive function of EGCG itself as well as the GTP.

  • PDF

Role of tea catechins in prevention of aging and age-related disorders

  • Khanna, Arjun;Maurya, Pawan Kumar
    • 셀메드
    • /
    • 제2권1호
    • /
    • pp.2.1-2.11
    • /
    • 2012
  • Tea polyphenols especially catechins have long been studied for their antioxidant and radical scavenging properties. Scientists throughout the world have investigated the usefulness of the regular green tea consumption in several disease conditions. In-vitro and in-vivo experiments on catechins especially epigallocatechingallate have revealed a significant role in many ways. Reactive oxygen species have been increasingly implicated in the pathogenesis of many diseases and important biological processes. Toxic effects of these oxidants, commonly referred to as oxidative stress, can cause cellular damage by oxidizing nucleic acids, proteins, and membrane lipids. Oxidative stress has been related to aging and age related disorders. It is found that in a wide variety of pathological processes, including cancer, atherosclerosis, neurological degeneration, Alzheimer's disease, ageing and autoimmune disorders, oxidative stress has its implications. Catechins have been reported to be useful in combating aging and age related disorders like cancer, cardiovascular disorders and neurodegenerative diseases. In this mini review we will discuss such studies done across the globe.

The Protective Effects of Green Tea Catechin on The Bleomycin and Cyclophosphamide Induced Cytotoxicity

  • Lim, Yong
    • 대한임상검사과학회지
    • /
    • 제46권2호
    • /
    • pp.75-78
    • /
    • 2014
  • Green tea and tea polyphenols have been studied extensively as cancer chemopreventive agents in recent years. Epigallocatechin-3-gallate (EGCG) is widely recognized as a powerful antioxidant and a free radical scavenger. The purpose of this study was to evaluate the protective effects of green tea catechins (GTC) on the Bleomycin- and Cyclophosphamide-induced cytotoxicity. Cell viability was measured by MTT assay. In the protective effect of GTC, the cell viability was significantly increased by the treatment of GTC. Furthermore, GTC showed the higher protective effect than EGCG and vitamin E. These results suggest that GTC has the protective effect which is related to the prevention of cancer. Our studies show that the continuous presence of EGCG can reduce radical-induced DNA damage in Chinese hamster lung fibroblast cells (CHL cells).

Physiological effects of formulation containing tannase-converted green tea extract on skin care: physical stability, collagenase, elastase, and tyrosinase activities

  • Hong, Yang-Hee;Jung, Eun Young;Noh, Dong Ouk;Suh, Hyung Joo
    • Integrative Medicine Research
    • /
    • 제3권1호
    • /
    • pp.25-33
    • /
    • 2014
  • Background: Green tea contains numerous polyphenols, which have health-promoting effects. The purpose of this study was to evaluate the effect of tannase-converted green tea extract (TGE) formulation on the physical stability and activities of skin-related enzymes. Methods: Physical stability was evaluated by measuring the pH, precipitation, and colors at $25{\pm}2^{\circ}C$ /ambient humidity and at $40{\pm}2^{\circ}C$ \70%${\pm}$5% relative humidity for 4 months. Activities of collagenase, elastase, and tyrosinase as skin-related enzymes were assessed on TGE formulation. Results: The concentrations of epigallocatechin-3-gallate and epicatechin-3-gallate in green tea extract were greatly decreased to the extent of negligible level when treated with tannase. The formulation containing 5% tannase-converted green tea extract showed relatively stable pH, precipitation, and color features for 16 weeks. When TGE was added to the formulation, there was a significant increase in the inhibition of elastase and tyrosinase activities (p<0.05) compared with the formulation containing 5% normal green tea extract. Conclusion: The TGE could be used in cosmetics as skin antiwrinkling or depigmenting agent.