• Title/Summary/Keyword: tea extract

Search Result 580, Processing Time 0.025 seconds

A comparison of anti-inflammatory activities of green tea and grapefruit seed extract with those of microencapsulated extracts (미세캡슐화한 녹차 및 자몽종자 추출물이 Murine RAW 264.7 대식세포주의 항염증에 미치는 영향 비교)

  • Jun, Yoon Kyung;Kim, Myung Hwan;Seong, Pil Nam;Chang, Moon-Jeong
    • Journal of Nutrition and Health
    • /
    • v.45 no.5
    • /
    • pp.443-451
    • /
    • 2012
  • We compared the effects of grapefruit seed extract (GFSE), green tea extract (GT) and their microencapsulated extract on anti-inflammatory activities in murine RAW 264.7 macrophages cell line. In order to protect the bioactive compounds in the extracts, they were microencapsulated with maltodextrin and $H_2O$. Nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), inducible nitric oxide synthase (iNOS) protein expression and thiobarbiturate reactive substances (TBARS) were analyzed in LPS activated RAW 264.7 macrophages. The green tea extract at the range of $100-600{\mu}g/mL$ inhibited NO, PGE2 production and iNOS protein expression without cytotoxicity in a dose-dependent manner. Grapefruit seed extract had strong inhibitory effects on NO and PGE production and iNOS protein expression at the range of $5-20{\mu}g/mL$ without cytotoxicity. Microencapsulation of green tea extract had further inhibitory effects on NO and PGE2 production and on iNOS protein expression, whereas microencapsulated GFSE did not show any further inhibitory effects on these parameters. Taken together, our results suggest that GSFE might be a promising candidate for preventing inflammation related diseases, such as cardiovascular disease, cancer or diabetes, and the microencapsulation of green tea extract could improve its bioactivity.

Effect of Catechins, Green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa - Combination therapy against resistant bacteria -

  • Bazzaz, Bibi Sedigheh Fazly;Sarabandi, Sahar;Khameneh, Bahman;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.19 no.4
    • /
    • pp.312-318
    • /
    • 2016
  • Objectives: Bacterial resistant infections have become a global health challenge and threaten the society's health. Thus, an urgent need exists to find ways to combat resistant pathogens. One promising approach to overcoming bacterial resistance is the use of herbal products. Green tea catechins, the major green tea polyphenols, show antimicrobial activity against resistant pathogens. The present study aimed to investigate the effect of catechins, green tea extract, and methylxanthines in combination with gentamicin against standard and clinical isolates of Staphylococcus aureus (S. aureus) and the standard strain of Pseudomonas aeruginosa (P. aeruginosa). Methods: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values of different agents against bacterial strains were determined. The interactions of green tea extract, epigallate catechin, epigallocatechin gallate, two types of methylxanthine, caffeine, and theophylline with gentamicin were studied in vitro by using a checkerboard method and calculating the fraction inhibitory concentration index (FICI). Results: The MICs of gentamicin against bacterial strains were in the range of $0.312-320{\mu}g/mL$. The MIC values of both types of catechins were $62.5-250{\mu}g/mL$. Green tea extract showed insufficient antibacterial activity when used alone. Methylxanthines had no intrinsic inhibitory activity against any of the bacterial strains tested. When green tea extract and catechins were combined with gentamicin, the MIC values of gentamicin against the standard strains and a clinical isolate were reduced, and synergistic activities were observed (FICI < 1). A combination of caffeine with gentamicin did not alter the MIC values of gentamicin. Conclusion: The results of the present study revealed that green tea extract and catechins potentiated the antimicrobial action of gentamicin against some clinical isolates of S. aureus and standard P. aeruginosa strains. Therefore, combinations of gentamicin with these natural compounds might be a promising approach to combat microbial resistance.

Maillard Reaction of Pidan White as Inhibited by Chinese Black Tea Extract (Camellia sinensis) in the Pickling Solution

  • Ganesan, Palanivel;Benjakul, Soottawat;Baharin, Badlishah Sham
    • Food Science of Animal Resources
    • /
    • v.34 no.4
    • /
    • pp.403-407
    • /
    • 2014
  • Changes in Maillard reaction of pidan white were monitored with $A_{294}$, fluorescence intensity, and browning intensity during pickling in the absence and presence of Chinese black tea extract (Camellia sinensis) at levels of 2% and 5% together with 0.2% $ZnCl_2$ or 0.2% $CaCl_2$ up to 3 wk, followed by ageing for another 3 wk. Browning intensity and $A_{294}$ of pidan white increased with increasing pickling/ageing, while fluorescence intensity decreased during ageing (p<0.05), irrespective of treatments. At wk 6, pidan white treated with 0.2% $ZnCl_2$ and 0.2% $CaCl_2$ showed slightly higher browning intensity, fluorescence intensity and $A_{294}$ than those treated with divalents together with Chinese black tea (p<0.05). Free amino group and sugar contents showed continuous decrease during pickling and ageing irrespective of tea and cations used. However, pidan treated without Chinese black tea extract showed significantly lower free amino group and sugar during the ageing of 6 wk (p<0.05). Thus, Chinese black tea extract had an inhibitory effect on the Maillard reaction during ageing of pidan white.

Effects of Green Tea on Weight Gain, Plasma and Liver Lipids and Lipid Peroxidation in Pair Fed Rats (Pair Fed 흰쥐에 있어서 녹차의 항증체, 지질개선 및 항산화 효과)

  • Kang, Jung-Ae;Chae, In-Sook;Song, Yong-Bo;Kang, Jung-Sook
    • Journal of Nutrition and Health
    • /
    • v.41 no.7
    • /
    • pp.602-611
    • /
    • 2008
  • We compared antiobese, hypocholesterolemic, antiplatelet and antioxidant effect of 10% green tea powder and 3% green tea extract in rats pair fed 5% cholesterol diets. The final body weight was decreased significantly compared with the control (p < 0.05). Plasma and liver total cholesterol were lower in group of green tea powder or extract, but not statistically different. HDL cholesterol was increased significantly in group of green tea powder compared with the control or green tea extract (p < 0.05). Plasma triglyceride was significantly decreased in group of green tea extract compared with green tea powder, and green tea powder compared with the control respectively (p < 0.05). Liver triglyceride was significantly decreased in group of green tea powder or green tea extract compared with the control (p < 0.01). Platelet aggregations in the maximum and initial slope were not different among groups. Hemolysis was significantly lower in group of green tea powder compared with the control (p < 0.05). Plasma TBARS production was decreased in group of green tea extract compared with the control (p < 0.05). Na passive leak in intact cells was not different, but Na leak in AAPH treated cell was significantly decreased in group of green tea powder than the control (p < 0.05). The leak increase (${\Delta}Na$ Leak) after AAPH treatment was significantly decreased in groups of green tea powder and extract compared with the control (p < 0.05). Isotope excretion after $^{14}C$-cholesterol ingestion was significantly increased in group of green tea extract compared with the control or the green tea powder (p < 0.05). Consumption of green tea in powder or extract may give beneficial effects in weight control and plasma lipid profiles, impeding metabolic syndrome. More studies are needed to clarify what component of green tea and what mechanism are involved in antiobese and hypolipedemic actions of green tea.

Antioxidative Effect on the Green Tea and Puer Tea Extracts (녹차와 보이차 추출물의 항산화 효과)

  • Son Gyu-Mok;Bae Sung-Moon;Chung Ji-Young;Shin Dong-Joo;Sung Tae-Soo
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.3
    • /
    • pp.219-224
    • /
    • 2005
  • To see the antioxidative ability of puer tea against green tea, antioxidative effects of water and methanol extracts were compared and researched each. Water extracts from green tea and puer tea contain similar percentage of total polyphenol content while methanol extract from puer tea has about $58\%$ of total polyphenol content of that from green tea. Water extracts from both teas contain similar percentage of the electron donating ability while methanol extract from puer tea has about $54\%$ of the electron donating ability of that from green tea. Solvents made a big difference in SOD-like activities. The activations in water extracts were from $13.46\%$ to $48.93\%$, which didn't give much difference between green tea and puer tea. However, the activations in methanol extracts were $59.63\%$ in green tea and $48.93\%$ in puer tea, which was $3\~4$ times higher than that in water extracts and green tea activated better. The nitrite scavenging activity was similar in water extracts from both teas and the methanol extract from puer tea had a bit higher nitrite scavenging activity than that from green tea. The ACE inhibitory activity in water extract from puer tea was about $38\%$ higher than that from green tea while the activity of methanol extract from green tea was higher than that from puer tea. These results indicate that the antioxidative ability of water extract from puer tea is similar to that from green tea but the ACE inhibitory activity of puer tea reveals higher value and antioxidative ability of methanol extract from puer tea was lower than that from green tea while the nitrite scavenging activity of puer tea was higher.

Effect of Extraction Condition on the Content of EGCG and Caffeine of Green Tea: Comparison with the Inhibitory Activity on Pancreatic Lipase

  • Lee, Eun Song;Lee, Mi Kyeong
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.166-172
    • /
    • 2013
  • Caffeine and epigallocatechin gallate (EGCG) are major constituents of green tea, the leaves of Camellia sinensis (Theaceae). Although EGCG is well known for diverse beneficial effect, caffeine is sometimes harmful with adverse effects. Therefore, the extraction efficiency was investigated using different extraction method such as extraction solvent, extraction time, extraction method, and repeated extraction. The content of EGCG and caffeine in green tea extract was quantitated by HPLC analysis. The extraction condition exerted difference on the extraction yield. The content of EGCG was also affected by different extraction condition. Especially, the extraction solvent greatly affected the content of EGCG in the extract. However, the content of caffeine was less affected compared to that of EGCG. The inhibitory effect of green tea extract on pancreatic lipase was almost similar regardless of extraction condition. Taken together, optimization of extraction condition will provide best efficacy for further development of green tea as anti-obesity therapeutics.

Oxidative DNA damage by Ethanol Extract of Green Tea

  • Park You-Gyoung;Kwon Hoonjeong
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.2
    • /
    • pp.71-75
    • /
    • 2005
  • Green tea and their major constituents such as catechins are famous materials for their anti-oxidative and anti-carcinogenic activity, but many compounds with reducing power can promote the oxidation in their oxidized form or in the presence of metal ion. We investigated the pro-oxidative effect of the ethanol extract equivalent up to 30mg of dried weight of green tea leaves in four in vitro systems which could be used for detecting DNA damage. Although ethanol extract of green tea did not show significant mutagenicity in Salmonella typhimurium TA102, which is sensitive strain to oxidative stress, it degraded deoxyribose extensively in the presence of $FeCl_3-EDTA$ complex, promoted 8-oxoguanine formation in the live bacteria cell, Salmonella typhimurium TAI04, and cleaved super coiled DNA strand with the help of copper ion. It suggested that green tea, famous anti-oxidative material, can be pro-oxidant according to the condition of extraction or metal existence.

  • PDF

Anti-oxidative Activity and Moisturizing Effect of Fermented Puer Tea Extract (발효보이차 추출물의 항산화활성 및 보습효과)

  • Kim, In-Young;Zhoh, Choon-Koo;Han, Sa-Ra;Bang, Young-Bae;Li, Ri-Yuan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.272-279
    • /
    • 2013
  • The fermented puer tea leaves were high concentrated extracted with 50% ethanolic solution in this study. Also, evaluating the anti-oxidative activity and anti-aging effect of this extract, we expected to apply the cosmetic industry. The yield of fermented puer tea extract was 17.9%. The total polyphenol content was 37.5%, tannin content was 7.5%, polysaccharide was 17.9%, unknown compound was 22%, and water content was 8%. Anti-oxidative activity (in-vitro) of fermented puer tea extract by DPPH method was $33.7{\pm}1.8%$ in 30mg/mL, $39.4{\pm}2.2%$ in 50mg/mL respectively. Therefore, we could know that anti-oxidative activity of fermented puer tea extract was effect higher than tocopheryl acetate and greentea extract. The collagen synthesis activity (in-vitro) of fermented puer tea extract was increased with $102.9{\pm}9.9%$ in 1 mg/mL, $111.5{\pm}9.9%$ in 5 mg/mL, $122.7{\pm}12.2%$ in 10 mg/mL, $131.5{\pm}13.7%$ in 30 mg/mL (*p-value£0.05, n=3). Skin moisturizing activity of fermented puer tea extract after application 8 hours was increased 38.5% higher than control samples both tocopheryl acetate and greentea extract. Total moisturizing effect was increased about 32.7% compared to before treatment. Fermented puer tea extract of this study can be applied to the skin care cosmetics industry.

Characterization of Kombucha Beverages Fermented with Various Teas and Tea Fungus

  • Lee, Sam-Pin;Kim, Chan-Shick
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.3
    • /
    • pp.165-169
    • /
    • 2000
  • Kombucha beverages were made from sweetened tea by Oriental, European and Tibetan tea fungus starters. The hot water extracts o green tea, black tea, Gugija and Omija were mixed with white and/or brown sugar, and were fermented under a static culture at 3$0^{\circ}C$. Titrable acidity, pH, color and cellulose production in kombucha beverages were evaluated. All tea fungus starters showed a higher acid production in green/black tea extracts rather than Gugija and Omija extracts. In green/black tea extracts Oriental tea fungus produced a kombucha beverage with a higher titrable acidity and lower pH than those of European and Tibetan tea fungus starters. By the static fermentation of green/black tea extract for 18 days, Oriental, Tibetan and European tea fungus starters produced cellulose pellicles of 0.43g, 0.16g, and 0.19 g (dry weight) on the top in the culture, respectively. As a mother starter, the cellulose pellicle was more efficient in acid production compared with tea fungus broth. Oriental/Tibetan mixed tea fungus showed the best acid production in the green/black tea extract supplemented with brown sugar.

  • PDF

Dyeing Characteristics and UV Protection Property of Green Tea Dyed Cotton Fabrics - Focusing on the Effect of Chitosan Mordanting Condition-

  • Kim Sin-Hee
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.255-261
    • /
    • 2006
  • There is increasing interest in the many beneficial aspects of green tea to human such as anti-carcinogenic, anti-aggregant, anti-allergic, anti-bacterial, anti-mutagenic, and anti-oxidant activities. Besides these beneficial aspects, it has been reported that green tea ingredients, especially polyphenolic families (i.e., catechin), have some UV protection property both in vivo and in topical applications. In this study, green tea extract was used as a dyeing stock for cotton and the UV protection property of the dyed cotton fabric was examined. To increase the affinity of cotton fiber to the polyphenolic components in the green tea extract, a natural biopolymer, chitosan, was used as mordanting agent. The effects of chitosan concentration in mordanting on the dyeing characteristics and the UV protection property were examined. Chitosan mordanted green tea dyed cotton showed better dyeing characteristic and higher UV protection property compared with the unmordanted green tea dyed cotton. As the chitosan concentration in mordanting increased, the dyeing efficiency and the UV protection property also increased. Therefore, adapting chitosan mordanting in green tea dyeing can increase the UV protection property of cotton fabrics to some extent.