References
- Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog. 2016;95:32-42. https://doi.org/10.1016/j.micpath.2016.02.009
- Khademi F, Poursina F, Hosseini E, Akbari M, Safaei HG. Helicobacter pylori in Iran: a systematic review on the antibiotic resistance. Iran J Basic Med Sci. 2015;18(1):2-7.
- Riley MA, Robinson SM, Roy CM, Dennis M, Liu V, Dorit RL. Resistance is futile: The bacteriocin model for ad-dressing the antibiotic resistance challenge. Biochem Soc Trans. 2012;40(6):1438-42. https://doi.org/10.1042/BST20120179
- Pantosti A, Sanchini A, Monaco M. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol. 2007;2(3):323-34. https://doi.org/10.2217/17460913.2.3.323
- Corvec S, Tafin F, Betrisey B, Borens O, Trampuz A. Activities of fosfomycin, tigecycline, colistin, and gen-tamicin against extended-spectrum-lactamase-producing Escherichia coli in a foreign-body infection mod-el. Antimicrob Agents Chemother. 2013;57(3):1421-7. https://doi.org/10.1128/AAC.01718-12
- Forouzanfar F, Bazzaz BSF, Hosseinzadeh H. Black cumin (Nigella sativa) and its constituent (thymoqui-none): a review on antimicrobial effects. Iran J Basic Med Sci. 2014;17(12):929-38.
- Khameneh B, Fazly Bazzaz BS, Amani A, Rostami J, Vahdati-Mashhadian N. Combination of anti-tuber-culosis drugs with vitamin C or NAC against different Staphylococcus aureus and mycobacterium tuberculosis strains. Microb Pathog. 2016;93:83-7. https://doi.org/10.1016/j.micpath.2015.11.006
- Hagihara M, Crandon JL, Nicolau DP. The efficacy and safety of antibiotic combination therapy for infections caused by gram-positive and gram-negative organisms. Expert Opin Drug Saf. 2012;11(2):221-33. https://doi.org/10.1517/14740338.2012.632631
- Olosunde OF, Abu-Saeed K, Abu-Saeed MB. Phytochemical screening and antimicrobial properties of a common brand of black tea (Camellia sinensis) marketed in Nigerian environment. Adv Pharm Bull. 2012;2(2):259-63. https://doi.org/10.5681/apb.2012.040
- Hamilton-Miller JM. Antimicrobial properties of tea (Camellia sinensis L.). Antimicrob Agents Chemother. 1995;39(11):2375-7. https://doi.org/10.1128/AAC.39.11.2375
- Yam TS, Shah S, Hamilton-Miller JM. Microbiological activity of whole and fractionated crude extracts of tea (Camellia sinensis), and of tea components. FEMS Microbiol Lett. 1997;152(1):169-74. https://doi.org/10.1111/j.1574-6968.1997.tb10424.x
- Chan EW, Soh EY, Tie PP, Law YP. Antioxidant and antibacterial properties of green, black, and herbal teas of Camellia sinensis. Pharmacognosy Res. 2011;3(4):266-72. https://doi.org/10.4103/0974-8490.89748
- Betts JW, Wareham DW. In vitro activity of curcumin in combination with epigallocatechin gallate (EGCG) versus multidrug-resistant Acinetobacter baumannii. BMC Microbiol. 2014;14:172. https://doi.org/10.1186/1471-2180-14-172
- Sharma A, Gupta S, Sarethy IP, Dang S, Gabrani R. Green tea extract: possible mechanism and antibacterial activity on skin pathogens. Food Chem. 2012;135(2):672-5. https://doi.org/10.1016/j.foodchem.2012.04.143
- Sourabh A, Kanwar SS, Sud RG, Ghabru A, Sharma OP. Influence of phenolic compounds of Kangra tea [Camellia sinensis (L) O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas. Braz J Microbiol. 2013;44(3):709-15. https://doi.org/10.1590/S1517-83822013000300007
- Osterburg A, Gardner J, Hyon SH, Neely A, Babcock G. Highly antibiotic-resistant acinetobacter baumannii clinical isolates are killed by the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG). Clin Microbiol Infect. 2009;15(4):341-6. https://doi.org/10.1111/j.1469-0691.2009.02710.x
- Zhao WH, Hu ZQ, Hara Y, Shimamura T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Anti-microb Agents Chemother. 2002;46(7):2266-8. https://doi.org/10.1128/AAC.46.7.2266-2268.2002
- Elgaher WA, Hayallah AM, Salem OIA, Abdel Alim AAM. Synthesis, anti-bronchoconstrictive, and antibacterial activities of some new 8-substituted-1,3-dimethylxan-thine derivatives. Bull Pharm Sci. 2009;32(1):153-87. https://doi.org/10.1248/bpb.32.153
- Hayallah AM, Elgaher WA, Salem OI, Alim AA. Design and synthesis of some new theophylline derivatives with bronchodilator and antibacterial activities. Arch Pharm Res. 2011;34(1):3-21. https://doi.org/10.1007/s12272-011-0101-8
- Bazzaz BS, Lavaei S, Hosseinzadeh H. Interaction of methylxanthines and gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa: role of phos-phodiesterase inhibition. Acta Microbiol Immunol Hung. 2012;59(1):13-20. https://doi.org/10.1556/AMicr.59.2012.1.2
- Hosseinzadeh H, Bazzaz BSF, Sadati MM. In vitro evaluation of methylxanthines and some antibiotics: interaction against Staphylococcus aureus and Pseu-domonas aeruginosa. Iran Biomed J. 2006;10(3):163-7.
- Gyawali R, Adkins A, C. Minor R, Ibrahim SA. Behavior and changes in cell morphology of Escherichia coli O157:H7 in liquid medium and skim milk in the presence of caffeine. CYTA-J Food. 2014;12(3):235-41. https://doi.org/10.1080/19476337.2013.834977
- Kim YW, Chun HJ, Kim IW, Liu HB, Ahn WS. Antimicrobial and antifungal effects of green tea extracts against microorganisms causing vaginitis. Food Sci Biotechnol. 2013;22(3):713-9. https://doi.org/10.1007/s10068-013-0136-3
- Khameneh B, Iranshahy M, Ghandadi M, Ghoochi Atashbeyk D, Fazly Bazzaz BS, Iranshahi M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev Ind Pharm. 2015;41(6):989-94. https://doi.org/10.3109/03639045.2014.920025
- Anita P, Sivasamy S, Madan Kumar PD, Balan IN, Ethi-raj S. In vitro antibacterial activity of Camellia sinensis extract against cariogenic microorganisms. J Basic Clin Pharm. 2014;6(1):35-9. https://doi.org/10.4103/0976-0105.145777
- Toda M, Okubo S, Ohnishi R, Shimamura T. [Antibacterial and bactericidal activities of Japanese green tea]. Nihon Saikingaku Zasshi. 1989;44(4):669-72. Japanese. https://doi.org/10.3412/jsb.44.669
- Lee JH, Shim JS, Chung MS, Lim ST, Kim KH. In vitro anti-adhesive activity of green tea extract against pathogen adhesion. Phytother Res. 2009;23(4):460-6. https://doi.org/10.1002/ptr.2609
- Chung JH, Han JH, Hwang EJ, Seo JY, Cho KH, Kim KH, et al. Dual mechanisms of green tea extract (EGCG)-induced cell survival in human epidermal keratinocytes. FASEB J. 2003;17(13):1913-5. https://doi.org/10.1096/fj.02-0914fje
- Taylor PW, Hamilton-Miller JM, Stapleton PD. Anti-microbial properties of green tea catechins. Food Sci Technol Bull. 2005;2:71-81.
- Rahal JJ Jr. Antibiotic combinations: the clinical relevance of synergy and antagonism. Medicine (Baltimore). 1978;57(2):179-95. https://doi.org/10.1097/00005792-197803000-00005
Cited by
- (green tea): A review vol.32, pp.7, 2018, https://doi.org/10.1002/ptr.6063
- Magnetic surface molecularly imprinted polymeric microspheres using gallic acid as a segment template for excellent recognition of ester catechins vol.10, pp.27, 2018, https://doi.org/10.1039/C8AY00903A