• Title/Summary/Keyword: taylor-series

Search Result 292, Processing Time 0.027 seconds

Design of a Planar Slotted Waveguide Array Antenna for X-band Radar Applications

  • Bhatti, Rashid Ahmad;Park, Byeong-Yong;Im, Yun-Taek;Park, Seong-Ook
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 2011
  • A planar slotted waveguide array antenna has been designed at 9.37 GHz for X-band radar applications. The antenna consists of multiple branchline waveguides with broadwall radiating shunt slots and a main waveguide to feed the branch waveguides through a series of inclined coupling slots. The antenna feed point is located at the center of the main waveguide. Element weights in the array have been calculated bysampling a continuous circular Taylor aperture distribution at the 25 dB sidelobe level in both the E and Hplanes. A commercially available electromagnetic (EM) simulation tool has been used to characterize the individual isolated slot and that data hassubsequently been used to design the planar array. The array is finally analyzed in a CST Microwave studio and the measured and simulated results have been found to be in good agreement.

Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam

  • Bozyigit, Baran;Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.847-868
    • /
    • 2016
  • In this study, the free vibration analysis of axially moving beams is investigated according to Reddy-Bickford beam theory (RBT) by using dynamic stiffness method (DSM) and differential transform method (DTM). First of all, the governing differential equations of motion in free vibration are derived by using Hamilton's principle. The nondimensionalised multiplication factors for axial speed and axial tensile force are used to investigate their effects on natural frequencies. The natural frequencies are calculated by solving differential equations using analytical method (ANM). After the ANM solution, the governing equations of motion of axially moving Reddy-Bickford beams are solved by using DTM which is based on Finite Taylor Series. Besides DTM, DSM is used to obtain natural frequencies of moving Reddy-Bickford beams. DSM solution is performed via Wittrick-Williams algorithm. For different boundary conditions, the first three natural frequencies that calculated by using DTM and DSM are tabulated in tables and are compared with the results of ANM where a very good proximity is observed. The first three mode shapes and normalised bending moment diagrams are presented in figures.

Development of a Ship Calculation Program Based On the Geometric Model (형상모델 기반 선박계산 전산프로그램 개발)

  • Sang-Su Park;Kyu-Yeul Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.121-134
    • /
    • 1999
  • In this paper, a ship calculation program is developed, which prof[nuts hydrostatics and volume calculation intact and damage stability and hull variation. Hull form and compartment geometry are expressed with NURBS curve wire-frame model. Hydrostatics and volume calculation are performed directly with the intersection method between section geometry and 3D planar surface. Equilibrium ship position is calculated with hydrostatic equilibrium equation which is linearized by 1st order Taylor series expansion sequentially. The developed program shows more accurate results and easy uses than the latter.

  • PDF

Linearized of Electrostatic Force in the Carbon Nanotube for Dynamic Behavior Analysis (CNT의 동적 거동 해석을 위한 정전기력의 선형화)

  • Lee, Jongkil
    • 대한공업교육학회지
    • /
    • v.30 no.2
    • /
    • pp.115-122
    • /
    • 2005
  • For an analysis of dynamic behavior in carbon nanotube(CNT) which is widely used as micro and nano-sensors, an electrostatic force of CNT was investigated. For larger gaps in between sensor and electrode the van der Waals force can be ignored. The boundary condition in the CNT was assumed to clamped-clamped case at both ends. In this paper electrostatic force is expressed as linear equation along deflection using Taylor series. The first and second terms(${\zeta}_0$ and ${\zeta}_1$) of the linear equation are analyzed. Based on the simulation results nondimensional number ${\Phi}_0$ and ${\Phi}_1$ which came from ${\zeta}_0$ and ${\zeta}_1$ were decreased according to the increment of the gap. Reduction ratio of the second term ${\zeta}_1$ is increased up to 99% along to the increment of the gap. The higher order terms can be ignored and therefore, electrostatic force can be expressed using the first two terms of the linear equation. This results play an important role in analyzing the nonlinear dynamic behavior of the CNT as well as the pull-in voltage of simply supported switches.

Reliability Estimation of Solder Joint by Using Failure Probability Model (파손확률 모델을 이용한 솔더 조인트의 건전성 평가)

  • Myoung, No-Hoon;Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.365-370
    • /
    • 2004
  • Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and solder joint' failure. The first order Taylor series expansion of the limit state function incorporating with Tresca failure criterion is used in order to estimate the failure probability of solder joints under heated condition. Using shear stresses and shear strains appeared on the solder joint, we estimate the failure probability of solder joints with the Tresca failure criterion. The effects of random variables such as CTE, distance of the solder joint from the neutral point(DNP), temperature variation and height of solder on the failure probability of the solder joint are systematically studied by using the failure probability model with first order reliability method(FORM).

  • PDF

Application of a discrete vortex method for the analysis of suspension bridge deck sections

  • Taylor, I.J.;Vezza, M.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.333-352
    • /
    • 2001
  • A two dimensional discrete vortex method (DIVEX) has been developed to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The predictions for the static section demonstrate that the method captures the character of the flow field at different angles of incidence. In addition, flutter derivatives are obtained from simulations of the flow field around the section undergoing vertical and torsional oscillatory motion. The subsequent predictions of the critical flutter velocity compare well with those from both experiment and other computations. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results from DIVEX are shown to be in accordance with previous analytical and experimental studies. In conclusion, the results indicate that DIVEX is a very useful design tool in the field of wind engineering.

Extended Kalman Filter Design for Sensorless Control of IPMSM Drive (IPMSM의 센서리스 운전을 위한 확장 칼만 필터 설계)

  • Jeon, Yong-Ho;Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1681-1690
    • /
    • 2013
  • In this paper, a design of speed and position controller based on the EKF(Extended Kalman Filter) for sensorless control in IPMSM(Interior Permanent Magnet Synchronous Motor) is proposed. The proposed method subdivides the state estimation interval for improving the accuracy of state estimation. and each subdivided interval estimated first order term using Taylor series. The proposed state estimator comparison with the second-order extended Kalman filter reduced calculation amount of a priori estimation. And the simulation results were proved that The accuracy of priori estimation is increased.

An Evaluation of the Second-order Approximation Method for Engineering Optimization (최적설계시 이차근사법의 수치성능 평가에 관한 연구)

  • 박영선;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.236-247
    • /
    • 1992
  • Optimization has been developed to minimize the cost function while satisfying constraints. Nonlinear Programming method is used as a tool for the optimization. Usually, cost and constraint function calculations are required in the engineering applications, but those calculations are extremely expensive. Especially, the function and sensitivity analyses cause a bottleneck in structural optimization which utilizes the Finite Element Method. Also, when the functions are quite noisy, the informations do not carry out proper role in the optimization process. An algorithm called "Second-order Approximation Method" has been proposed to overcome the difficulties recently. The cost and constraint functions are approximated by the second-order Taylor series expansion on a nominal points in the algorithm. An optimal design problem is defined with the approximated functions and the approximated problem is solved by a nonlinear programming numerical algorithm. The solution is included in a candidate point set which is evaluated for a new nominal point. Since the functions are approximated only by the function values, sensitivity informations are not needed. One-dimensional line search is unnecessary due to the fact that the nonlinear algorithm handles the approximated functions. In this research, the method is analyzed and the performance is evaluated. Several mathematical problems are created and some standard engineering problems are selected for the evaluation. Through numerical results, applicabilities of the algorithm to large scale and complex problems are presented.presented.

A Efficient Calculation for log and exponent with A Dual Phase Instruction Architecture (효율적인 로그와 지수 연산을 위한 듀얼 페이즈 명령어 구조)

  • Kim, Jun-Seo;Lee, Kwang-Yeob;Kwak, Jae-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.320-323
    • /
    • 2010
  • This paper proposes efficient log and exponent calculation methods using a dual phase instruction set without additional ALU unit for a mobile enviroment. Using the Dual Phase Instruction set, it extracts exponent and mantissa from expression of floating point and calculates 24bit single precision floating point of log approximation using the Taylor series expansion algorithm. And with dual phase instruction set, it reduces instruction excution cycles. The proposed Dual Phase architecture reduces the performance degradation and maintain smaller size.

  • PDF

Regulation Control of Two-Link Robot Arm with the Input Constraint using Sum of Squares Method (SOS 제어기법을 이용한 입력제한이 있는 2관절 로봇팔의 조정제어)

  • Jeong, Jin-Gang;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1270-1276
    • /
    • 2016
  • This paper proposes the controller design for regulation control of two-link robot arm using sum of squares (SOS) control method that takes into account the input constraint. The existing studies of two link robotic arm system used a linear model of all the non-linearity of the system is linearized. For a linear controller, since the model of the system is simplified, it is possible to design a controller in consideration of constraints on the disturbance. However, there is a limit to the performance using a linearized model for a system with a complex nonlinear properties. To compensate for this in the case of using a fuzzy LMI method, it is necessary to have a large number of linear models and thus there is a disadvantage that the system becomes complicated. To solve these problems, we represents a two-link robot arm system with a polynomial model using a Taylor series expansion and design the controller considering the case where the magnitude of the control input is limited using SOS method. We demonstrate by simulations the feasibility of the proposed algorithm.