• Title/Summary/Keyword: taylor vortex

Search Result 56, Processing Time 0.021 seconds

Flow of non-Newtonian fluid in a concentric annulus with rotation (환형관내 비뉴튼유체의 회전유동에 관한 연구)

  • Kim, Young-Ju;Woo, Nam-Sub;Seo, Byung-Taek;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2095-2100
    • /
    • 2003
  • This Experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin-friction coefficients have been measured for fully developed flow of bentonite-water solution(5%) when the inner cylinder rotates at the speed $0{\sim}400rpm$. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number $R_o$ With respect to the skin friction coefficients. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. In all flow regime, the skin friction coefficient is increased by the inner cylinder rotation. The critical (bulk flow) Reynolds number $Re_c$ decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

  • PDF

Study on the direct approach to reinitialization in using level set method for simulating incompressible two-phase flows (비압축성 2 상유동의 모사를 위한 level set 방법에서의 reinitialization 직접 접근법에 관한 연구)

  • Cho, Myung-H.;Choi, Hyoung-G.;Yoo, Jung-Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.568-571
    • /
    • 2008
  • The computation of moving interface by the level set method typically requires reinitializations of level set function. An inaccurate estimation of level set function ${\phi}$ results in incorrect free-surface capturing and thus errors such as mass gain/loss. Therefore, accurate and robust reinitialization process is essential to the free-surface flows. In the present paper, we pursue further development of the reinitialization process, which evaluates directly level set function ${\phi}$ using a normal vector in the interface without solving the re-distancing equation of hyperbolic type. The Taylor-Galerkin approximation and P1P1splitting FEM are adopted to discretize advection equation of the level set function and the Navier-Stokes equation, respectively. Advection equation of free surface and re-initialization process are validated with benchmark problems, i.e., a broken dam flow and time-reversed single vortex flow. The simulation results are in good agreement with the existing results.

  • PDF

Study on the Solution of Reinitialization Equation for Level Set Method in the Simulation of Incompressible Two-Phase Flows (비압축성 2 상유동의 모사를 위한 Level Set 방법의 Reinitialization 방정식의 해법에 관한 연구)

  • Cho, Myung-Hwan;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.754-760
    • /
    • 2008
  • Computation of moving interface by the level set method typically requires the reinitialization of level set function. An inaccurate estimation of level set function $\phi$ results in incorrect free-surface capturing and thus errors such as mass gain/loss. Therefore, an accurate and robust reinitialization process is essential to the simulation of free-surface flows. In the present paper, we pursue further development of the reinitialization process, which evaluates level set function directly using a normal vector on the interface without solving there-distancing equation of hyperbolic type. The Taylor-Galerkin approximation and P1P1 splitting/SUPG (Streamline Upwind Petrov-Galerkin) FEM are adopted to discretize advection equation of the level set function and the incompressible Navier-Stokes equation, respectively. Advection equation and re-initialization process of free surface capturing are validated with benchmark problems, i.e., a broken dam flow and timereversed single vortex flow. The simulation results are in good agreement with the existing results.

Flow of Non-Newtonian Fluids in an Annulus with Rotation of the Inner Cylinder (안쪽축이 회전하는 환형관내 비뉴튼유체 유동 연구)

  • 김영주;우남섭;황영규
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 2002
  • This experimental study concerns the characteristics of a helical flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is rotating. The pressure losses and skin friction coefficients have been measured for the fully developed flow of Non-Newtonian fluid, aqueous solution of sodium carbomethyl cellulose (CMC) and bentonite with inner cylinder rotational speed of 0~400 prm. Also, the visualization of helical flows has been performed to observe the unstable waves. The results of present study reveal the relation of the Reynolds number Re and Rossby number Ro with respect to the skin friction coefficients. In somehow, they show the existence of flow instability mechanism. The pressure losses increase as the rotational speed increases, but the gradient of pressure losses decreases as the Reynolds number increases in the regime of transition and turbulence. And the increase of flow disturbance by Taylor vortex in a concentric annulus with rotating inner cylinder results in the decrease of the critical Reynolds number with the increase of skin friction coefficient.

Hybrid Particle Image Velocimetry Based on Affine Transformation (어파인변환 기반 하이브리드 PIV)

  • Doh, Deog-Hee;Cho, Gyong-Rae;Lee, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.603-608
    • /
    • 2011
  • Since PTV (particle tracking velocimetry) provides velocity vectors by tracking each particle in a fluid flow, it has significant benefits when used for nano- and bio-fluid flows. However, PTV has only been used for limited flow fields because interpolation data loss is inevitable in PTV in principle. In this paper, a hybrid particle image velocimetry (PIV) algorithm that eliminates interpolation data loss was constructed by using an affine transformation. For the evaluation of the performance of the constructed hybrid PIV algorithm, an artificial image test was performed using Green-Taylor vortex data. The constructed algorithm was tested on experimental images of the wake flow (Re = 5,300) of a rectangular body ($6cm\;{\times}3cm$), and was demonstrated to provide excellent results.

Turbulent Couette Flow between Coaxial Cylinders with Inner Cylinder Rotating (내측원관이 회전하는 동심이중원관 사이의 난류 쿠에트 유동에 관한 연구)

  • 김광용;김진욱;조용철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.540-546
    • /
    • 1992
  • Turbulent Couette flow between coaxial cylinders with inner one rotating has been investigated experimentally and numerically. The radius ratio of the coaxial cylinders is 0.43. Mean velocity and turbulent stresses have been measured by hot-wire anemometer in the range of Reynolds number based on the velocity at rotating wall and the radial distance between walls, 60,900-187,000. For the numerical computation, the Reynolds stress model has been used as a turbulence closure model. Measurements of mean velocity show that the velocity profile of wall layer largely deviates from universal logarithmic law due to the effect of streamline curvature, especially in the region near the stationary outer cylinder. The results computed with the Reynolds stress model agree well with the experimental data in the prediction of circumferential intensity of turbulent fluctuations. However, the computed level of radial intensity is much higher than the measurement. Curvature-corrected versions of the Reynolds stress model improves the prediction of turbulent intensities, but the results are not fully satisfactory.