• 제목/요약/키워드: targeted agents

검색결과 136건 처리시간 0.027초

Arctigenin Inhibits Etoposide Resistance in HT-29 Colon Cancer Cells during Microenvironmental Stress

  • Yoon, Sae-Bom;Park, Hae-Ryong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.571-576
    • /
    • 2019
  • Microenvironmental stress, which is naturally observed in solid tumors, has been implicated in anticancer drug resistance. This tumor-specific stress causes the degradation of topoisomerase $II{\alpha}$, rendering cells resistant to topoisomerase $II{\alpha}$-targeted anticancer agents. In addition, microenvironmental stress can induce the overexpression of 78kDa glucose regulated protein (GRP78), which can subsequently block the activation of apoptosis induced by treatment with anticancer agents. Therefore, inhibition of topoisomerase $II{\alpha}$ degradation and reduction in GRP78 expression may be effective strategies for inhibiting anticancer drug resistance. In this study, we investigated the active compound arctigenin, which inhibited microenvironmental stress-induced etoposide resistance in HT-29 cells. Arctigenin was also highly toxic to etoposide-resistant HT-29 cells, with an $IC_{50}$ value of $10{\mu}M$ for colony formation. We further showed that arctigenin inhibited the degradation of topoisomerase $II{\alpha}$ and reduced the expression of GRP78. Thus, these results suggest that arctigenin is a novel therapeutic agent that inhibits resistance to etoposide associated with microenvironmental stress conditions.

Recent Advances in Cell Therapeutics for Systemic Autoimmune Diseases

  • Youngjae Park;Seung-Ki Kwok
    • IMMUNE NETWORK
    • /
    • 제22권1호
    • /
    • pp.10.1-10.17
    • /
    • 2022
  • Systemic autoimmune diseases arise from loss of self-tolerance and immune homeostasis between effector and regulator functions. There are many therapeutic modalities for autoimmune diseases ranging from conventional disease-modifying anti-rheumatic drugs and immunosuppressants exerting nonspecific immune suppression to targeted agents including biologic agents and small molecule inhibitors aiming at specific cytokines and intracellular signal pathways. However, such current therapeutic strategies can rarely induce recovery of immune tolerance in autoimmune disease patients. To overcome limitations of conventional treatment modalities, novel approaches using specific cell populations with immune-regulatory properties have been attempted to attenuate autoimmunity. Recently progressed biotechnologies enable sufficient in vitro expansion and proper manipulation of such 'tolerogenic' cell populations to be considered for clinical application. We introduce 3 representative cell types with immunosuppressive features, including mesenchymal stromal cells, Tregs, and myeloid-derived suppressor cells. Their cellular definitions, characteristics, mechanisms of immune regulation, and recent data about preclinical and clinical studies in systemic autoimmune diseases are reviewed here. Challenges and limitations of each cell therapy are also addressed.

Spaces of Articulated (Non-)Economic Practices and Social Reproduction: Economic Geographical Perspective to the Marketization in North Korea (절합된 (비-)경제적 관행의 공간과 사회적 재생산: 북한 시장화에 대한 경제지리학적 접근)

  • Kim, Boo-Heon;Lee, Sung-Cheol
    • Journal of the Economic Geographical Society of Korea
    • /
    • 제22권4호
    • /
    • pp.381-404
    • /
    • 2019
  • The paper aims to identify how North Korean various economic agents respond to the economic crisis in North Korea, and how these multiple practices are entangled with its spatiality by through the questionnaire survey and in-depth interview targeted at North Korean refugees. The paper argues that it needs to examine the marketization in North Korea in terms of the domesticating recently debated in economic geography. In this perspective, the marketization in North Korea could be explained not as a grand project 'out there' with hegemonic power, but as various economic agents within their space are constantly (re)constructed through everyday life practices. Economic agents' responses to economic crisis, economic rupture, and economic marginalization could be identified in terms of articulation between economic and non-economic factors. More specifically, the paper emphasizes everyday life responses are over-determined by their economic and non-economic factors and its effectiveness is differentiated by their power relations.

Shikonin Induced Necroptosis via Reactive Oxygen Species in the T-47D Breast Cancer Cell Line

  • Shahsavari, Zahra;Karami-Tehrani, Fatemeh;Salami, Siamak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.7261-7266
    • /
    • 2015
  • Breast cancer, the most common cancer in the women, is the leading cause of death. Necrotic signaling pathways will enable targeted therapeutic agents to eliminate apoptosis-resistant cancer cells. In the present study, the effect of shikonin on the induction of cell necroptosis or apoptosis was evaluated using the T-47D breast cancer cell line. The cell death modes, caspase-3 and 8 activities and the levels of reactive oxygen species (ROS) were assessed. Cell death mainly occurred through necroptosis. In the presence of Nec-1, caspase-3 mediated apoptosis was apparent in the shikonin treated cells. Shikonin stimulates ROS generation in the mitochondria of T-47D cells, which causes necroptosis or apoptosis. Induction of necroptosis, as a backup-programmed cell death pathway via ROS stimulation, offers a new strategy for the treatment of breast cancer.

Clinical Efficacy and Possible Applications of Genomics in Lung Cancer

  • Alharbi, Khalid Khalaf
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1693-1698
    • /
    • 2015
  • The heterogeneous nature of lung cancer has become increasingly apparent since introduction of molecular classification. In general, advanced lung cancer is an aggressive malignancy with a poor prognosis. Activating alterations in several potential driver oncogenic genes have been identified, including EGFR, ROS1 and ALK and understanding of their molecular mechanisms underlying development, progression, and survival of lung cancer has led to the design of personalized treatments that have produced superior clinical outcomes in tumours harbouring these mutations. In light of the tsunami of new biomarkers and targeted agents, next generation sequencing testing strategies will be more appropriate in identifying the patients for each therapy and enabling personalized patients care. The challenge now is how best to interpret the results of these genomic tests, in the context of other clinical data, to optimize treatment choices. In genomic era of cancer treatment, the traditional one-size-fits-all paradigm is being replaced with more effective, personalized oncologic care. This review provides an overview of lung cancer genomics and personalized treatment.

Cyclooxygenase-2 as a Molecular Target for Cancer Chemopreventive Agents

  • Surh, Young-Joon
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.89-96
    • /
    • 2001
  • Recently, considerable attention has been focused on the role of cyclooxygenase-2 (COX-2) in the carcinogenesis as well as in inflammation. Improperly overexpressed COX-2 has been observed in many types of human cancers and transformed cells in culture. Thus, it is conceivable that targeted inhibition of abnormally or improperly up-regulated COX-2 provides one of the most effective and promising strategies for cancer prevention. A ubiquitous eukaryotic transcription factor, NF-kB is considered to be involved in regulation of COX-2 expression. Furthermore, extracellular-regulated protein kinase and p38 mitogen-activated protein (MAP) kinase appear to be key elements of the intracellular signaling cascades involved in NF-kB activation in response to a wide array of external stimuli. Certain chemopreventive phytochemicals suppress activation of NF-kB by blocking one or more of the MAP kinases, which may contribute to their inhibitory effects on COX-2 induction. One of the plausible mechanisms by which chemopreventive phytochemicals inhibit NF-kB activation involves suppression of degradation of the inhibitory unit I kB, which hampers subsequent translocation of p65, the functionally active subunit of NF-kB.

  • PDF

Multi-Target Cytotoxic Actions of Flavonoids in Blood Cancer Cells

  • Sak, Katrin;Everaus, Hele
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.4843-4847
    • /
    • 2015
  • To date, cytotoxic effects of flavonoids in various cancer cells are well accepted. However, the intracellular signaling cascades triggered by these natural compounds remain largely unknown and elusive. In this mini-review, the multiplicity of molecular targets of flavonoids in blood cancer cells is discussed by demonstrating the involvement of various signaling pathways in induction of apoptotic responses. Although these data reveal a great potential of flavonoids for the development of novel agents against different types of hematological malignancies, the pleiotropic nature of these compounds in modulation of cellular processes and their interactions certainly need unraveling and further investigation.

DNA의 구조적, 기능적 특성과 이의 환경, 의료 분야에의 응용

  • Lee, Jeong-Heon;Odom, Teri;Lu, Yi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.55.1-55.1
    • /
    • 2012
  • In the first part of this talk, I will introduce an effort to use gold nanoparticles and UO22+ (uranyl) specific DNAzyme for development of highly sensitive and selective colorimetric uranyl sensors. In addition, I will discuss how DNA aptamers can be delivered by nanoparticles to cancer cell nucleus and released by ultrafast femtosecond pulsed laser for targeted cancer therapy. Finally, I will show how proteins such as streptavidin and myoglobin, or nanoparticles can be precisely aligned on DNA with nanometer resolution via backbone-modified phosphorothioate DNA and bifunctional linkers. These interesting functional and structural properties of DNA can provide new opportunities to develop dynamic DNA structures for potential use as intracellular sensors and drug delivery agents.

  • PDF

Biotransformation of Rosamicin Antibiotic into 10,11-Dihydrorosamicin with Enhanced In Vitro Antibacterial Activity Against MRSA

  • Nguyen, Lan Huong;Nguyen, Huu Hoang;Shrestha, Anil;Sohng, Jae Kyung;Yoon, Yeo Joon;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.44-47
    • /
    • 2014
  • A biotransformation approach using microbes as biocatalysts can be an efficient tool for the targeted modification of existing antibiotic chemical scaffolds to create previously uncharacterized therapeutic agents. By employing a recombinant Streptomyces venezuelae strain as a microbial catalyst, a reduced macrolide, 10,11-dihydrorosamicin, was created from rosamicin macrolide. Its chemical structure was spectroscopically elucidated, and the new rosamicin analog showed 2-4-fold higher antibacterial activity against two strains of methicillin-resistant Staphylococcus aureus compared with its parent rosamicin. This kind of biocatalytic approach is able to expand existing antibiotic entities and can also provide more diverse therapeutic resources.

Discovery of Novel 11β-HSD1 Inhibitors by Pharmacophore-Based Virtual Screening

  • Kim, Nam-Doo;Lee, Youn-Ho;Han, Chang-Kyun;Ahn, Soon-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2365-2368
    • /
    • 2012
  • The $11{\beta}$-hydroxysteroid dehydrogenase type 1 ($11{\beta}$-HSD1) enzyme is involved in modulation of glucocorticoid activity within target tissues. This enzyme may contribute to obesity and/or metabolic disease through its action in adipose or liver tissue. Inhibition of $11{\beta}$-HSD1 has major therapeutic potential for glucocorticoid-associated diseases, including obesity, diabetes (wound healing), and muscle atrophy. To develop such therapeutics, we performed a pharmacophore-based virtual screening (VS) for identification of novel $11{\beta}$-HSD1 inhibitors and found that the VS hit compounds show potent inhibition of $11{\beta}$-HSD1 enzyme activity. Further, we present a binding model for active compounds. The proposed pharmacophore may serve as a useful guideline for future design of new chemical entities as $11{\beta}$-HSD1-targeted antidiabetic agents.