• Title/Summary/Keyword: target scale estimation

Search Result 55, Processing Time 0.025 seconds

A Systematic Review of Validation Studies on Depression Rating Scales in Korea, with a Focus on Diagnostic Validity Information : Preliminary Study for Development of Korean Screening Tool for Depression (국내 우울증 평가도구 타당화 연구의 체계적 고찰-진단적 타당성을 중점으로 : 한국형 우울 선별 도구 개발을 위한 예비 연구)

  • Jung, Sooyun;Kim, Shin-Hyang;Park, Kiho;Jaekal, Eunju;Lee, Won-Hye;Choi, Younyoung;Lee, Seung-Hwan;Choi, Kee-Hong
    • Anxiety and mood
    • /
    • v.13 no.2
    • /
    • pp.53-59
    • /
    • 2017
  • Reliable and valid diagnostic screening tools in the primary care setting enable accurate estimation of depression in individuals at risk or in need of treatment, and provide patients with an opportunity to receive optimal treatments. Although there have been extensive studies on screening tools for depression used in domestic mental health settings, there is little consideration and lack of a thorough review of the diagnostic validity of screening tools. In the current review, we selected 13 representative screening tools for depression which were evaluated in a total of 19 validation studies conducted in Korea. We summarized DSM-5 target domains, diagnostic indices, sensitivity, specificity, cut-off scores, and diagnostic validity information for each tool. Finally, the depression measurement expert group was constituted to evaluate the current status of screening tools for depression, and their recommendations for a new screening tool were summarized. This study was conducted as part of the Mental Health Technology Development project to develop the Korean screening tool for depression (K-DEP).

Numerical Analysis on Penetration Reduction of a WHA Penetrator by an Impact of Linear Explosively Formed Penetrator(LEFP) (선형폭발성형탄(LEFP) 충격에 의한 WHA 관통자의 관통성능 감소에 관한 수치해석 연구)

  • Joo, Jaehyun;Choi, Joonhong;Koo, ManHoi;Kim, Dongkyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.384-392
    • /
    • 2017
  • A linear explosively formed penetrator(LEFP) is a modification of the explosively formed penetrator(EFP). An EFP is axisymmetric and has a dish-shaped liner while LEFP has a rectangular-shaped liner with curved cross section. Upon detonating LEFP forms laterally wide projectile like blade, leaving a long penetration hole on the target. On the other hand, a long-rod tungsten heavy alloy(WHA) penetrator is one of the major threats against most of the ground armored vehicles. In this paper, the feasibility of using an LEFP in protecting against a long-rod WHA penetrator by colliding LEFP into the threat was investigated through a set of numerical simulations. In this study, a scale-down WHA penetrator with length to diameter ratio(L/D) of 10.7 and 7.0 mm diameter was used to represent a long-rod WHA penetrator. LS-DYNA and Multi-Material ALE technique were employed for the simulation. For estimation of the protection effect by LEFP, residual penetration depths into RHA by the threat were compared according to various impact locations against the threat.

A Study of Damage District Forecast by Combine Topograph Modeling of Insular Areas Using GIS

  • Choi, Byoung Gil;Na, Young Woo;Ahn, Soon Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.2
    • /
    • pp.113-122
    • /
    • 2017
  • Natural disasters caused by climate change are increasing globally. There are few studies on the quantitative analysis methods for predicting damages in the island area due to sea level rise. Therefore, it is necessary to study the damage prediction analysis method using the GIS which can quantitatively analyze. In this paper, we analyze the cause and status of sea level rise, quantify the vulnerability index, establish an integrated terrestrial modeling method of the ocean and land, and establish a method of analyzing the damage area and damage scale due to sea level rise using GIS and the method of making the damage prediction figure was studied. In order to extract the other affected areas to sea level rise are apart of the terrain model is generated by one requires a terrain modeling of target areas are offshore and vertical reference system differences in land, found the need for correction by a tidal observations and geoid model there was. Grading of terrain, coastline erosion rate, coastal slope, sea level rise rate, and even average by vulnerable factors due to sea level rise indicates that quantitative damage prediction is possible due to sea level rise in the island area. In the case of vulnerable areas extracted by GIS, residential areas and living areas are concentrated on the coastal area due to the nature of the book area, and field survey shows that coastal changes and erosion are caused by sea level rise or tsunami.

Suggestion of Synthetic Unit Hydrograph Method Considering Hydrodynamic Characteristic on the Basin (유역의 동수역학적 특성을 고려한 합성단위도 기법의 제시)

  • Kim, Joo Cheol;Choi, Yong Joon;Jeong, Dong Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.47-55
    • /
    • 2011
  • This study suggests new synthetic unit hydrograph method considering hydrodynamic characteristic on the basin. The suggested method based on width function GIUH, and the procedure is summarized as follows; 1) Draw up a travel distance distribution map (width function) which is raster of length between from center of individual cells to the outlet by GIS. 2) Calculation of travel time distribution map (rescaled width function) by hydrodynamic parameters and travel distance distribution map. 3) Derivation of IUH and Duration UH from rescaled width function. 4) Comparison of shape of UH between suggested method and existing synthetic unit hydrograph methods. The target basins are selected Ipyeong and Tanbu subwatershed in the Bocheong Basin. The target basins are similar scale (watershed area), but different drainage structure (drainage density et al.). Therefore we anticipate that there are different hydrologic response functions because different hydrodynamic characteristics. As a result of derivation of UH, existing synthetic unit hydrograph methods are similar shape of UHs about Ipyeong and Tanbu watersheds, but the suggested method is different shape of ones. As a result of application to observed data, the peak discharge by suggested method is similar to existing synthetic unit hydrograph methods, but the peak time is well correspondence between those. Henceforth, if the suggested method combines with the rational velocity estimation method, it is useful method for synthetic of UH in ungauged watershed.

Spatial Gap-filling of GK-2A/AMI Hourly AOD Products Using Meteorological Data and Machine Learning (기상모델자료와 기계학습을 이용한 GK-2A/AMI Hourly AOD 산출물의 결측화소 복원)

  • Youn, Youjeong;Kang, Jonggu;Kim, Geunah;Park, Ganghyun;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.953-966
    • /
    • 2022
  • Since aerosols adversely affect human health, such as deteriorating air quality, quantitative observation of the distribution and characteristics of aerosols is essential. Recently, satellite-based Aerosol Optical Depth (AOD) data is used in various studies as periodic and quantitative information acquisition means on the global scale, but optical sensor-based satellite AOD images are missing in some areas with cloud conditions. In this study, we produced gap-free GeoKompsat 2A (GK-2A) Advanced Meteorological Imager (AMI) AOD hourly images after generating a Random Forest based gap-filling model using grid meteorological and geographic elements as input variables. The accuracy of the model is Mean Bias Error (MBE) of -0.002 and Root Mean Square Error (RMSE) of 0.145, which is higher than the target accuracy of the original data and considering that the target object is an atmospheric variable with Correlation Coefficient (CC) of 0.714, it is a model with sufficient explanatory power. The high temporal resolution of geostationary satellites is suitable for diurnal variation observation and is an important model for other research such as input for atmospheric correction, estimation of ground PM, analysis of small fires or pollutants.

A Study on Atmospheric Turbulence-Induced Errors in Vision Sensor based Structural Displacement Measurement (대기외란시 비전센서를 활용한 구조물 동적 변위 측정 성능에 관한 연구)

  • Junho Gong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.1-9
    • /
    • 2024
  • This study proposes a multi-scale template matching technique with image pyramids (TMI) to measure structural dynamic displacement using a vision sensor under atmospheric turbulence conditions and evaluates its displacement measurement performance. To evaluate displacement measurement performance according to distance, the three-story shear structure was designed, and an FHD camera was prepared to measure structural response. The initial measurement distance was set at 10m, and increased with an increment of 10m up to 40m. The atmospheric disturbance was generated using a heating plate under indoor illuminance condition, and the image was distorted by the optical turbulence. Through preliminary experiments, the feasibility of displacement measurement of the feature point-based displacement measurement method and the proposed method during atmospheric disturbances were compared and verified, and the verification results showed a low measurement error rate of the proposed method. As a result of evaluating displacement measurement performance in an atmospheric disturbance environment, there was no significant difference in displacement measurement performance for TMI using an artificial target depending on the presence or absence of atmospheric disturbance. However, when natural targets were used, RMSE increased significantly at shooting distances of 20 m or more, showing the operating limitations of the proposed technique. This indicates that the resolution of the natural target decreases as the shooting distance increases, and image distortion due to atmospheric disturbance causes errors in template image estimation, resulting in a high displacement measurement error.

Review on Research Result for Bophi Vum Chrome Mineralized Zone in Northwestern Myanmar (미얀마 북서부 보피붐 크롬광화대 연구결과 리뷰)

  • Heo, Chul-Ho;Ryoo, Chung-Ryul;Park, Gyesoon
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.499-508
    • /
    • 2019
  • Based on the preliminary surveys for the occurrences of the Muwellut chrome-nickel mineralized zone ($800km^2$) in northwestern Myanmar, Bophivum area was selected as the detailed exploration area after considering data source, geological potential, metallogenic province, necessity of resource development on target mineral, exploration activity, grade, ore deposit type, nearby operating mine, infrastructure and exploration prediction effect. From 2013 to 2016, KIGAM and DGSE carried out geological and geochemical survey with 1:1,000 scale, magnetic survey(areal extent, $1.672km^2$), trench survey(19 trench, total length 392 m), pitting survey(18 pit, total depth 42.6m), exploration drilling(6holes 600m, 2015; 13holes 617.4m). We analyzed Cr and Ni contents of 77 drill cores with specific gravity in Yangon DGSE analytical center. Considering surface geological survey, geochemical exploration, magnetic survey, trench survey and drilling data, we divided Bophivum area into 8 blocks. Resource estimation are divided into measured and indicated resources. Measured resource is about 9,790t and indicated resource is about 12,080t with the average grade of Cr 11.8% and Ni 0.34%. In case of Bophivum area, if we develop by tying up Webula chrome mineralized zone in the south, it will be possible to upgrade the medium-scale mine. Geologically, the ophiolite belt are distributed in the western and eastern part in Myanmar. So, the exploration technology obtained from exploation in Bophivum area will be helpful to discover the hidden chromitite ore body in Myanmar ophiolite belt in the future.

A Study on Flood Storage Plans of Farmlands for Extreme Flood Reduction (극한홍수 저감을 위한 농경지의 저류지화 방안 연구)

  • Kang, Hyeong-Sik;Cho, Seong-Yun;Song, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.787-795
    • /
    • 2011
  • Extreme water events such as heavy rainfalls due to recent climate change are continually increasing and their scale has also shown an increasing trend. To overcome these natural disasters, this policy study suggests securing lateral river space as an effective method for extreme flood. To support the importance of restoration and expansion of lateral river space, Gumi upstream region of the Nakdong River basin was chosen as a target area and flood reduction analysis of the washland by using LISFLOOD model have been examined. The 500-year frequency flood was simulated for the estimation of possibly occurable flood level and it turns out that the secured lateral river space on the selected site effectively lowers about 0.53 m flood level and reduces the flood damage of the city on the lower reaches of the river. In addition, based on this result, multilateral river space securing plans were compared, and conservation easement and natural disaster insurance were suggested for sustainable and cost-effective alternatives. The costs of land purchase and conservation easement for securing the river space were also compared.

Design Hourly Factor Estimation with Vehicle Detection System (차량검지기자료를 이용한 고속도로 설계시간계수 산정 연구)

  • Baek, Seung-Geol;Kim, Beom-Jin;Lee, Jeong-Hui;Son, Yeong-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.79-88
    • /
    • 2007
  • Design Hourly Volume (DHV) is the hourly volume used for designing a section of road. DHV is also used to estimate the expected number of vehicles to pass or traverse the relevant section of road in a future target year. The Design Hour Factor (DHF) is defined as the ratio of DHV to Average Annual Daily Traffic (AADT). In addition to high precision of predicted traffic volume, in order to design a roadway to be the proper scale, applying appropriate DHFs considering traffic flow characteristics and type of area which surrounds the relevant roadway is important. This study categorizes sections of expressway (Suh Hae An Expressway) according to their area type and estimates DHFs utilizing traffic data obtained from a vehicle detection system (VDS). This study shows that DHFs calculated using VDS data are different from those using traffic data acquired from a coverage survey. While AADTs from both data show similar values, peak hour volumes from both data show significant differences especially for recreational areas. DHFs from the coverage survey are quite different from the values provided by the Korean design guide or previous research results and DHFs for urban areas are higher than recreational areas. However, DHFs from VDS shows similar values to previous research results. The result of this study suggests that using VDS for estimating DHFs is more reliable than using a coverage survey.

Minimum Floor Area Ratio Estimation Model for Reconstruction Projects to Compensate for Loss of the Aged Long-term Public Rental Housing (노후 장기공공임대주택 손실보전을 위한 재건축사업의 최소용적률 수리모델)

  • Joe, Wongoog;Na, Seunguk;Cho, Jeaho;Chae, MyungJin;Son, Bosik;Kim, Hyunsoo;Chun, JaeYoul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.5
    • /
    • pp.108-116
    • /
    • 2022
  • Started in 1989 as Public Permanent Rental Housing scheme, public rental housing lease policy is increasing target residents and supply in each government by introducing new supply types. However, public housing business entities have difficulties in expanding the supply due to cumulated deficit. The research suggested long-term public rental housing reconstruction business as a method to preserve the cumulated deficit from the previous. Minimum floor area ratio mathematical model was suggested by defining the floor area ratio of reconstruction business as minimum, since housing sales profit after reconstruction could preserve aggregated deficit, and mathematically approached by considering the traits of long-term public rental housing reconstruction. The determinant for minimum floor area ratio mathematical model comprise cumulated deficit of the existing long-term public rental housing, land size of reconstructed sale housing, housing sales price per unit area, and business cost per unit area. Minimum floor area ratio mathematical model is expected to be the milestone for supporting decision making regarding the economic part of old long-term public lease housings' reconstruction scale, and expanding housing supply within urban area.