Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.156-156
/
2019
In this study, a gated recurrent unit (GRU) network is constructed based on a deep neural network (DNN) with the aim of restoring the missing daily flow data in river basins. Lai Chau hydrological station is located upstream of the Da river basin (Vietnam) is selected as the target station for this study. Input data of the model are data on observed daily flow for 24 years from 1961 to 1984 (before Hoa Binh dam was built) at 5 hydrological stations, in which 4 gauge stations in the basin downstream and restoring - target station (Lai Chau). The total available data is divided into sections for different purposes. The data set of 23 years (1961-1983) was employed for training and validation purposes, with corresponding rates of 80% for training and 20% for validation respectively. Another data set of one year (1984) was used for the testing purpose to objectively verify the performance and accuracy of the model. Though only a modest amount of input data is required and furthermore the Lai Chau hydrological station is located upstream of the Da River, the calculated results based on the suggested model are in satisfactory agreement with observed data, the Nash - Sutcliffe efficiency (NSE) is higher than 95%. The finding of this study illustrated the outstanding performance of the GRU network model in recovering the missing flow data at Lai Chau station. As a result, DNN models, as well as GRU network models, have great potential for application within the field of hydrology and hydraulics.
Chemokine receptor antagonists have potential applications in field of drug discovery. Although the chemokine receptors are G-protein-coupled receptors, their cognate ligands are small proteins (8 to 12 kDa), and so inhibiting the ligand/receptor interaction has been challenging. The application of structure-based in-silico methods to drug discovery is still considered a major challenge, especially when the x-ray structure of the target protein is unknown. Such is the case with human CCR2 and CCR5, the most important members of the chemokine receptor family and also a potential drug target. Herein, we review the success stories of combined receptor modeling/mutagenesis approach to probe the allosteric nature of chemokine receptor binding by small molecule antagonists for CCR2 and CCR5 using Rhodopsin as template. We also urged the importance of recently available ${\beta}2$-andrenergic receptor as an alternate template to guide mutagenesis. The results demonstrate the usefulness and robustness of in-silico 3D models. These models could also be useful for the design of novel and potent CCR2 and CCR5 antagonists using structure based drug design.
The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.
Oomycetes are known to secrete a vast arsenal of effectors that modulate the host defense system as well as facilitate establishing a parasitic infection in plants. In recent years, tremendous progress has been made in the field of effectromics based on studies of oomycetes, especially the cytoplasmic family of RXLR effectors. Yet, the biology of the RXLR effector family is still poorly understood. There has been a consensus regarding the structure of the RXLR motif in the mycologist community. However, the function of the RXLR motif is still unclear. First, different models have suggested that the role of the RXLR motif is either in translocation to a target destination inside a host cell or in the cleavage of itself followed by secretion. Second, recent studies have suggested different functional models for the RXLR motif. According to a widely accepted model, the RXLR motif is directly involved in the translocation of effectors to target sites. In contrast, a new study has proposed that the RXLR motif is involved in secretion rather than translocation. Thus, this review is an attempt to summarize the recent advances made in the functional analysis of the N-terminal domain of RXLR effectors.
Radon and radon progeny being natural radioactive pollutants, seriously affect the health of uranium miners. Radon reduction by ventilation is an essential means to improve the working environment. Firstly, the relational model is built between the radon exhalation rate of the loose body and the ventilation parameters in the stope with radon percolation-diffusion migration dynamics. Secondly, the model parameters of radon exhalation dynamics are uncertain and described by triangular membership functions. The objective functions of the left and right equations of the radon exhalation model are constructed according to different possibility levels, and their extreme value intervals are obtained by the immune particle swarm optimization algorithm (IPSO). The fuzzy target and fuzzy constraint models of radon exhalation are constructed, respectively. Lastly, the fuzzy aggregation function is reconstructed according to the importance of the fuzzy target and fuzzy constraint models. The optimal control decision with different possibility levels and importance can be obtained using the swarm intelligence algorithm. The case study indicates that the fuzzy aggregation function of radon exhalation has an upward trend with the increase of the cut set, and fuzzy optimization provides the optimal decision-making database of radon treatment and prevention under different decision-making criteria.
Journal of the Earthquake Engineering Society of Korea
/
v.1
no.3
/
pp.21-27
/
1997
In this paper, the hysteretic characteristics of traditional wooden house frame,which is fabricated by Sagaemachum, under cyclic lateral load are presented. Full scale frame models are used in the tests. The skeleton curves of traditional wooden frame are quite different from those of wooden frames which are fabricated using nails or bracings. The equivalent viscous damping ratios of the frame system are about 27% and 13% for ordinary and high-column frames, respectively. The nonlinear hysteretic characteristics of the frame is modeled by the so called Modified Double Target model.
For speech recognition systems, rejection function as well as decoding function is necessary to improve the reliability. There have been many research efforts on out-of-vocabulary word rejection, however, little attention has been paid on non-target sentence rejection. Recently pronunciation approaches using speech recognition increase the need for non-target sentence rejection to provide more accurate and robust results. In this paper, we proposed filler model method and word/phoneme detection ratio method to implement non-target sentence rejection system. We made performance evaluation of filler model along to word-level, phoneme-level, and sentence-level filler models respectively. We also perform the similar experiment using word-level and phoneme-level word/phoneme detection ratio method. For the performance evaluation, the minimized average of FAR and FRR is used for comparing the effectiveness of each method along with the number of words of given sentences. From the experimental results, we got to know that word-level method outperforms the other methods, and word-level filler mode shows slightly better results than that of word detection ratio method.
Visual object tracking is a fundamental problem in the field of computer vision, as it needs a proper model to account for drastic appearance changes that are caused by shape, textural, and illumination variations. In this paper, we propose a feature-based visual-object-tracking method with a sparse representation. Generally, most appearance-based models use the gray-scale pixel values of the input image, but this might be insufficient for a description of the target object under a variety of conditions. To obtain the proper information regarding the target object, the following combination of features has been exploited as a corresponding representation: First, the features of the target templates are extracted by using the HOG (histogram of gradient) and LBPs (local binary patterns); secondly, a feature-based sparsity is attained by solving the minimization problems, whereby the target object is represented by the selection of the minimum reconstruction error. The strengths of both features are exploited to enhance the overall performance of the tracker; furthermore, the proposed method is integrated with the particle-filter framework and achieves a promising result in terms of challenging tracking videos.
Angiogenesis in tumors is driven by multiple growth factors that activate receptor tyrosine kinases. An important driving force of angiogenesis in solid tumors is signaling through vascular endothelial growth factor (VEGF) and its receptors (VEGFRs). Angiogenesis inhibitors that target this signaling pathway are now in widespread use for the treatment of cancer. However, when used alone, inhibitors of VEGF/VEGFR signaling do not destroy all blood vessels in tumors and do not slow the growth of most human cancers. VEGF/VEGFR signaling inhibitors are, therefore, used in combination with chemotherapeutic agents or radiation therapy. Additional targets for inhibiting angiogenesis would be useful for more efficacious treatment of cancer. One promising target is the signaling pathway of hepatocyte growth factor (HGF) and its receptor (HGFR, also known as c-Met), which plays important roles in angiogenesis and tumor growth. Inhibitors of this signaling pathway have been shown to inhibit angiogenesis in multiple in vitro and in vivo models. The HGF/c-Met signaling pathway is now recognized as a promising target in cancer by inhibiting angiogenesis, tumor growth, invasion, and metastasis.
Multi-sensor data fusion techniques combine evidences from multiple sensors in order to get more accurate and efficient meaningful information through several process levels that may not be possible from a single sensor alone. One of the most important parts in the data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models, and parametric classification technique is usually used in multi-sensor data fusion system by its characteristic. In this paper, we propose a novel heuristic identification fusion method in which we adopt desirable properties from not only parametric classification technique but also cognitive-based models in order to meet the realtime processing requirements.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.