• Title/Summary/Keyword: target model update

Search Result 49, Processing Time 0.021 seconds

Robust Target Model Update for Mean-shift Tracking with Background Weighted Histogram

  • Jang, Yong-Hyun;Suh, Jung-Keun;Kim, Ku-Jin;Choi, Yoo-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1377-1389
    • /
    • 2016
  • This paper presents a target model update scheme for the mean-shift tracking with background weighted histogram. In the scheme, the target candidate histogram is corrected by considering the back-projection weight of each pixel in the kernel after the best target candidate in the current frame image is chosen. In each frame, the target model is updated by the weighted average of the current target model and the corrected target candidate. We compared our target model update scheme with the previous ones by applying several test sequences. The experimental results showed that the object tracking accuracy was greatly improved by using the proposed scheme.

Multi-Phase Model Update for System Identification of PSC Girders under Various Prestress Forces

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.579-592
    • /
    • 2010
  • This paper presents a multi-phase model update approach for system identification of prestressed concrete (PSC) girders under various prestress forces. First, a multi-phase model update approach designed on the basis of eigenvalue sensitivity concept is newly proposed. Next, the proposed multi-phase approach is evaluated from controlled experiments on a lab-scale PSC girder for which forced vibration tests are performed for a series of prestress forces. On the PSC girder, a few natural frequencies and mode shapes are experimentally measured for the various prestress forces. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model which is established for the target PSC girder. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model update procedure. Based on model update results, the relationship between prestress forces and model-updating parameters is analyzed to evaluate the influence of prestress forces on structural subsystems.

Fitting Enhancement of AAM Using Synthesized Illumination Images (조명 영상 합성을 통한 AAM 피팅 성능 개선)

  • Lee, Hyung-Soo;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.409-414
    • /
    • 2007
  • Active Appearance Model is a well-known model that can represent a non-rigid object effectively. However, since it uses the fixed appearance model, the fitting results are often unsatisfactory when the imaging condition of the target image is different from that of training images. To alleviate this problem, incremental AAM was proposed which updates its appearance bases in an on-line manner. However, it cannot deal with the sudden changes of illumination. To overcome this, we propose a novel scheme to update the appearance bases. When a new person appears in the input image, we synthesize illuminated images of that person and update the appearance bases of AAM using it. Since we update the appearance bases using synthesized illuminated images in advance, the AAM can fit their model to a target image well when the illumination changes drastically. The experimental results show that our proposed algorithm improves the fitting performance over both the incremental AAM and the original AAM.

  • PDF

Adaptive Update Rate Tracking Using IMM Algorithm (IMM 알고리듬을 이용한 적응 최신화 빈도 추적)

  • 신형조;홍선목
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.12
    • /
    • pp.59-66
    • /
    • 1993
  • In this paper we propose an adaptive update rate tracking algorithm for a phased array radar, based on the interacting multiple model(IMM) algorithm. The purpose of the IMM algorithm hers is twofold: 1) to estimate and predict the target states, and 2) to estimate the level of the process noise. Using the estimate of the process noise level adapted to target dynamics, the update interval is determined to maintain a desired prediction accuracy so that the radar system load is minimized. The adaptive update rate tracking algorithm is implemented for a phased array radar and evaluated with Monte Carlo simulations on various trajectories. The evaluation results of the proposed algorithm and a standard Kalman filter without the adaptive update rate control are presented to compare.

  • PDF

Development of Target Vehicle State Estimation Algorithm Using V2V Communication (V2V 통신을 이용한 상대 차량 상태 추정 알고리즘 개발)

  • Kwon, Woojin;Jo, Ara;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.70-74
    • /
    • 2022
  • This paper describes the development of a target vehicle state estimation algorithm using vehicle-to-vehicle (V2V) communication. Perceiving the state of the target vehicle has great importance for successful autonomous driving and has been studied using various sensors and methods for many years. V2V communication has advantage of not being constrained by surrounding circumstances relative to other sensors. In this paper, we adopt the V2V signal for estimating the target vehicle state. Since applying only the V2V signal is improper by its low frequency and latency, the signal is used as additional measured data to improve the estimation accuracy. We estimate the target vehicle state using Extended Kalman filter (EKF); a point mass model was utilized in process update to predict the state of next step. The process update is followed by measurement update when ego vehicle receives V2V information. The proposed study evaluated state estimation by comparing input V2V information in an experiment where the ego vehicle follows the target vehicle behind it.

The Performance Analysis of IMM-MPDA Filter in Multi-lag Out of Sequence Measurement Environment (Multi-lag Out of Sequence Measurement 환경에서의 IMM-MPDA 필터 성능 분석)

  • Seo, Il-Hwan;Song, Taek-Lyul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1476-1483
    • /
    • 2007
  • In a multi-sensor target tracking systems, the local sensors have the role of tracking the target and transferring the measurements to the fusion center. The measurements from the same target can arrive out of sequence called, the out-of-sequence measurements(OOSMs). The OOSM can arise in a form of single-lag or multi-lag throughout the transfer at the fusion center. The recursive retrodiction step was proposed to update the current state estimates with the multi-lag OOSM from the several previous papers. The real world has the possible situations that the maneuvering target informations can arrive at the fusion center with the random clutter in the possible OOSMs. In this paper, we incorporate the IMM-MPDA(Interacting Multiple Model - Most Probable Data Association) into the multi-lag OOSM update. The performance of the IMM-MPDA filter with multi-lag OOSM update is analyzed for the various clutter densities, OOSM lag numbers, and target maneuvering indexes. Simulation results show that IMM-MPDA is sufficient to be used in out of sequence environment and it is necessary to correct the current state estimates with OOSM except a very old OOSM.

Study on Nonlinear Filter Using Unscented Transformation Update (무향변환을 이용한 비선형 필터에 대한 연구)

  • Yoon, Jangho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • The optimal estimation of a general continuous-discrete system can be achieved through the solution of the Fokker-Planck equation and the Bayesian update. Due the high nonlinearity of the equation of motion of the system and the measurement model, it is necessary to linearize the both equation. To avoid linearization, the filter based on Fokker-Planck equation is designed. with the unscented transformation update mechanism, in which the associated Fokker-Planck equation was solved efficiently and accurately via discrete quadrature and the measurement update was done through the unscented transformation update mechanism. This filter based on the Direct Quadrature Moment of Method(DQMOM) and the unscented transformation update is applied to the bearing only target tracking problem. The proposed filter can still provide more accurate estimation of the state than those of the extended Kalman filter especially when measurements are sparse. Simulation results indicate that the advantages of the proposed filter based on the DQMOM and the unscented transformation update make it a promising alternative to the extended Kalman filter.

New adaptive tracking filter for maneuvering target (운동물체에 대한 적응제어에 관한 연구)

  • 양흥석;송광섭
    • 전기의세계
    • /
    • v.31 no.2
    • /
    • pp.119-125
    • /
    • 1982
  • A new approach to the maneuvering target tracking problem is proposed. Its basic concept is to take the maneuver variable from the measurements. Tracking scheme based on the Kalman filter estimates the maneuver varieble from the residual and uses the estimates to update the Kalman filter. The estimation process is independent of target types and a model of the maneuver characteristics. All the filtering algorithms are processed in polor coordinate. Simulation results are presented and compared to that of the extended Kalman filter.

  • PDF

Design of Target Tracking System Using a New Intelligent Algorithm

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.748-753
    • /
    • 2005
  • When the maneuver occurs, the performance of the standard Kalman filter has been degraded because mismatches between the modeled target dynamics and the actual target dynamics. To solve this problem, the unknown acceleration is determined by using the fuzzy logic based on genetic algorithm(GA) method. This algorithm is the method to estimate the increment of acceleration by a fuzzy system using th relation between maneuver filler residual and non-maneuvering one. To optimize this system, a GA is utilized. And then, the modified filter is corrected by the new update equation method which is a fuzzy system using the relation between the filter residual and its variation. To shows the feasibility of the suggested method with only one filter, the computer simulations system are provided, this method is compared with multiple model method.

Separate Signature Monitoring for Control Flow Error Detection (제어흐름 에러 탐지를 위한 분리형 시그니처 모니터링 기법)

  • Choi, Kiho;Park, Daejin;Cho, Jeonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.225-234
    • /
    • 2018
  • Control flow errors are caused by the vulnerability of memory and result in system failure. Signature-based control flow monitoring is a representative method for alleviating the problem. The method commonly consists of two routines; one routine is signature update and the other is signature verification. However, in the existing signature-based control flow monitoring, monitoring target application is tightly combined with the monitoring code, and the operation of monitoring in a single thread is the basic model. This makes the signature-based monitoring method difficult to expect performance improvement that can be taken in multi-thread and multi-core environments. In this paper, we propose a new signature-based control flow monitoring model that separates signature update and signature verification in thread level. The signature update is combined with application thread and signature verification runs on a separate monitor thread. In the proposed model, the application thread and the monitor thread are separated from each other, so that we can expect a performance improvement that can be taken in a multi-core and multi-thread environment.