• 제목/요약/키워드: target enrichment system

검색결과 16건 처리시간 0.018초

FCAnalyzer: A Functional Clustering Analysis Tool for Predicted Transcription Regulatory Elements and Gene Ontology Terms

  • Kim, Sang-Bae;Ryu, Gil-Mi;Kim, Young-Jin;Heo, Jee-Yeon;Park, Chan;Oh, Berm-Seok;Kim, Hyung-Lae;Kimm, Ku-Chan;Kim, Kyu-Won;Kim, Young-Youl
    • Genomics & Informatics
    • /
    • 제5권1호
    • /
    • pp.10-18
    • /
    • 2007
  • Numerous studies have reported that genes with similar expression patterns are co-regulated. From gene expression data, we have assumed that genes having similar expression pattern would share similar transcription factor binding sites (TFBSs). These function as the binding regions for transcription factors (TFs) and thereby regulate gene expression. In this context, various analysis tools have been developed. However, they have shortcomings in the combined analysis of expression patterns and significant TFBSs and in the functional analysis of target genes of significantly overrepresented putative regulators. In this study, we present a web-based A Functional Clustering Analysis Tool for Predicted Transcription Regulatory Elements and Gene Ontology Terms (FCAnalyzer). This system integrates microarray clustering data with similar expression patterns, and TFBS data in each cluster. FCAnalyzer is designed to perform two independent clustering procedures. The first process clusters gene expression profiles using the K-means clustering method, and the second process clusters predicted TFBSs in the upstream region of previously clustered genes using the hierarchical biclustering method for simultaneous grouping of genes and samples. This system offers retrieved information for predicted TFBSs in each cluster using $Match^{TM}$ in the TRANSFAC database. We used gene ontology term analysis for functional annotation of genes in the same cluster. We also provide the user with a combinatorial TFBS analysis of TFBS pairs. The enrichment of TFBS analysis and GO term analysis is statistically by the calculation of P values based on Fisher’s exact test, hypergeometric distribution and Bonferroni correction. FCAnalyzer is a web-based, user-friendly functional clustering analysis system that facilitates the transcriptional regulatory analysis of co-expressed genes. This system presents the analyses of clustered genes, significant TFBSs, significantly enriched TFBS combinations, their target genes and TFBS-TF pairs.

An ELISA-on-a-Chip Biosensor System for Early Screening of Listeria monocytogenes in Contaminated Food Products

  • Seo, Sung-Min;Cho, Il-Hoon;Kim, Joo-Ho;Jeon, Jin-Woo;Oh, Eun-Gyoung;Yu, Hong-Sik;Shin, Soon-Bum;Lee, Hee-Jung;Paek, Se-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2993-2998
    • /
    • 2009
  • An enzyme-linked immunosorbent assay (ELISA)-on-a-chip (EOC) biosensor combined with cell concentration technology based on immuno-magnetic separation (IMS) was investigated for use as a potential tool for early screening of Listeria monocytogenes (L. monocytogenes) in food products. The target analyte is a well-known pathogenic foodborne microorganism and outbreaks of the food poisoning typically occur due to contamination of normal food products. Thus, the aim of this study was to develop a rapid and reliable sensor that could be utilized on a daily basis to test food products for the presence of this pathogenic microorganism. The sensor was optimized to provide a high detection capability (e.g., 5.9 ${\times}\;10^3$ cells/mL) and, to eventually minimize cultivation time. The cell density was condensed using IMS prior to analysis. Since the concentration rate of IMS was greater than 100-fold, this combination resulted in a detection limit of 54 cells/mL. The EOC-IMS coupled analytical system was then applied to a real sample test of fish intestines. The system was able to detect L. monocytogenes at a concentration of 2.4 CFU/g after pre-enrichment for 6 h from the onset of cell cultivation. This may allow us to monitor the target analyte at a concentration less than 1 CFU/g within a 9 h-cultivation provided a doubling time of 40 min is typically maintained. Based on this estimation, the EOC-IMS system can screen and detect the presence of this microorganism in food products almost within working hours.

Serum exosomal miR-192 serves as a potential detective biomarker for early pregnancy screening in sows

  • Ruonan Gao;Qingchun Li;Meiyu Qiu;Su Xie;Xiaomei Sun;Tao Huang
    • Animal Bioscience
    • /
    • 제36권9호
    • /
    • pp.1336-1349
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed miRNAs in sows at early pregnancy by high-throughput sequencing and explore its mechanism of action on embryo implantation. Methods: The blood serum of pregnant and non-pregnant Landrace×Yorkshire sows were collected 14 days after artificial insemination, and exosomal miRNAs were purified for high throughput miRNA sequencing. The expression patterns of 10 differentially expressed (DE) miRNAs were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR quantified the abundance of serum exosomal miR-192 in pregnant and control sows, and the diagnostic power was assessed by receiver operating characteristic (ROC) analysis. The target genes of DE miRNAs were predicted with bioinformatics software, and the functional and pathway enrichment analysis was performed on gene ontology and the Kyoto encyclopedia of genes and genomes terms. Furthermore, a luciferase reporter system was used to identify the target relation between miR-192 and integrin alpha 4 (ITGA4), a gene influencing embryo implantation in pigs. Finally, the expression levels of miRNAs and the target gene ITGA4 were analyzed by qRT-PCR, and western blot, with the proliferation of BeWo cells detected by cell counting kit-8 (CCK-8). Results: A total of 221 known miRNAs were detected in the libraries of the pregnant and non-pregnant sows, of which 55 were up-regulated and 67 were down-regulated in the pregnant individuals compared with the non-pregnant controls. From these, the expression patterns of 10 DE miRNAs were validated. The qRT-PCR analysis further confirmed a significantly higher expression of miR-192 in the serum exosomes extracted from pregnant sows, when compared to controls. The ROC analysis revealed that miR-192 provided excellent diagnostic accuracy for pregnancy (area under the ROC curve [AUC]=0.843; p>0.001). The dual-luciferase reporter assay indicated that miR-192 directly targeted ITGA4. The protein expression of ITGA4 was reduced in cells that overexpressed miR-192. Overexpression of miR-192 resulted in the decreased proliferation of BeWo cells and regulated the expression of cell cycle-related genes. Conclusion: Serum exosomal miR-192 could serve as a potential biomarker for early pregnancy in pigs. miR-192 targeted ITGA4 gene directly, and miR-192 can regulate cellular proliferation.

Prediction of Non-Genotoxic Carcinogenicity Based on Genetic Profiles of Short Term Exposure Assays

  • Perez, Luis Orlando;Gonzalez-Jose, Rolando;Garcia, Pilar Peral
    • Toxicological Research
    • /
    • 제32권4호
    • /
    • pp.289-300
    • /
    • 2016
  • Non-genotoxic carcinogens are substances that induce tumorigenesis by non-mutagenic mechanisms and long term rodent bioassays are required to identify them. Recent studies have shown that transcription profiling can be applied to develop early identifiers for long term phenotypes. In this study, we used rat liver expression profiles from the NTP (National Toxicology Program, Research Triangle Park, USA) DrugMatrix Database to construct a gene classifier that can distinguish between non-genotoxic carcinogens and other chemicals. The model was based on short term exposure assays (3 days) and the training was limited to oxidative stressors, peroxisome proliferators and hormone modulators. Validation of the predictor was performed on independent toxicogenomic data (TG-GATEs, Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System, Osaka, Japan). To build our model we performed Random Forests together with a recursive elimination algorithm (VarSelRF). Gene set enrichment analysis was employed for functional interpretation. A total of 770 microarrays comprising 96 different compounds were analyzed and a predictor of 54 genes was built. Prediction accuracy was 0.85 in the training set, 0.87 in the test set and increased with increasing concentration in the validation set: 0.6 at low dose, 0.7 at medium doses and 0.81 at high doses. Pathway analysis revealed gene prominence of cellular respiration, energy production and lipoprotein metabolism. The biggest target of toxicogenomics is accurately predict the toxicity of unknown drugs. In this analysis, we presented a classifier that can predict non-genotoxic carcinogenicity by using short term exposure assays. In this approach, dose level is critical when evaluating chemicals at early time points.

Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma

  • Keerakarn Somsuan;Siripat Aluksanasuwan
    • Genomics & Informatics
    • /
    • 제21권2호
    • /
    • pp.22.1-22.15
    • /
    • 2023
  • Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OS-kirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.

Mousse cake와 Tiramisu에 인위접종된 Salmonella Typhimurium의 식품공전 분리배지, Real-time PCR과 Loop-mediated isothermal amplification-bioluminescence의 검출 특성 비교 (Comparison of Isolation Agar Method, Real-Time PCR and Loop-Mediated Isothermal Amplification-Bioluminescence for the Detection of Salmonella Typhimurium in Mousse Cake and Tiramisu)

  • 이소영;곽승해;김진희;오세욱
    • 한국식품위생안전성학회지
    • /
    • 제34권3호
    • /
    • pp.290-295
    • /
    • 2019
  • 최근 한국에서 발생한 Salmonella로 인한 식중독 사고는 2018년 9월 학교급식에서 제공된 초콜릿 무스 케이크가 원인이 되었다. 이 연구의 목적은 Salmonella Typhimurium이 인위적으로 접종된 무스케이크와 티라미수에서 3M Molecular Detection Assay 2 - Salmonella와 식품공전에 등재된 방법인 분리배지와 real-time PCR을 비교하는 것이었다. 무스케이크 2종과 티라미수 2종 25 g에 225 mL BPW를 넣고 $37^{\circ}C$에서 24시간 동안 증균 배양하였다. 배양 후, 3M Molecular Detection Assay 2 - Salmonella, 분리배지 그리고 real-time PCR로 분석하였다. 초콜릿 무스 케이크를 제외하고 3가지 방법은 유사한 결과를 보였다. 초콜릿 무스 케이크에서 분리배지와 3M Molecular Detection Assay 2 - Salmonella는 모든 접종수준에서 동일한 결과를 나타낸 반면 real-time PCR은 $10^4CFU/25g$ 수준에서 1번의 양성결과를 제외하고 모두 검출되지 않았다. 초콜릿 무스에 S. Typhimurium을 $10^2CFU/25g$ 수준으로 접종하였을때, real-time PCR를 이용한 검출은 15%에서는 부분적인 음성을 나타냈고, 20-100% 함량의 초콜릿 무스에서는 모두 음성이었다. Real-time PCR로는 chocolate이 15% 이상 함유된 식품에서의 Salmonella균 검출이 불가능하였지만, LMAP 기반의 3M Molecular Detection Assay 2으로는 chocolate 농도에 관계없이 검출이 가능하였다.