• 제목/요약/키워드: tapes

검색결과 800건 처리시간 0.022초

고온초전도 적층선재에서의 층간 거리에 따른 자화손실 (Magnetization Losses of the HTS Stacked Tapes at Various Gap between Tapes)

  • 최명섭;박명진;차귀수;이지광
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2003
  • Rise of the current level at power applications, such as, transformer, motor and power cable, need for using stacked HTS tapes. In this paper, we measured losses of the stacked HTS tapes. Three different types of the stacks which were made of 2 tapes, 3 tapes and 4 tapes, were tested Perpendicular magnetic field was applied to the HTS stacks as the external magnetic field. Effects of the gap between HTS tapes were examined.

  • PDF

적층형 Bi-2223 고온초전도 선재 제작에 관한 연구 (A Study on fabrication of stacking type Bi-2223 HTS tapes)

  • 임성우;두호익;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제13권8호
    • /
    • pp.718-723
    • /
    • 2000
  • The critical characteristics of Bi-2223 HTS tapes made by PIT method are influenced by the heat treatment and the mechanical processing. In this study firstly we investigated the influence o rolling reduction rate in mechanical process for improving Jc of HTS tapes. As a result the optimized rolling reduction rate that we obtained was 10%-50% and 30%-30% (1st-2nd). And then we fabricated the stacking type HTS tapes that made of the multi-filamentary tapes with various length(3, 5, 10cm) and with various number of stacking (1, 5, 10 layer). Measuring the critical current and observing the structure of grain we concluded that the stacking type tapes will be able to operate more stably by adding the number of stacking tapes. And we could expect that by minimizing the gap between Ag-sheath of tapes mechanical strength of stacking HTS tapes is enhanced and current in tapes will flow more stably.

  • PDF

Variation of the Transport Property in Lap-Jointed YBCO Coated Conductor Tapes with Tension and Bending Deformation

  • Dizon, John Ryan C.;Bonifacio, Rolly;Park, Sung-Taek;Shin, Hyung-Seop
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권4호
    • /
    • pp.11-15
    • /
    • 2007
  • In practical applications of HTS tapes for electric devices such as coils and power cables, the jointing of HTS tapes is inevitable even though long length tapes have recently been achieved. The critical current, $I_c$, degradation behaviors with tensile and bending deformations were investigated in commercially available YBCO coated conductor tapes. When the V-I relationship was measured at the jointed section of the lap-jointed YBCO CC tapes, the resistance at the joint decreased with increasing joint length. The critical load for 95% $I_c$ retention were determined for the IBAD and RABiTS YBCO tapes and they were 175 and 355N, respectively. Fracture occurred at the unjointed part which represents strong copper lamination and solder jointing. The electro-mechanical properties of lap-jointed CC tapes depended on the properties of single tapes. The V-I behavior under bending strain was similar with the tensile case.

미세한 공혈을 통한 소음의 저감을 위한 접착 테이프 별 삽입손실 특성 (Characteristics of Insertion Loss of Adhesive Tapes to Reduce Noise through Small Opening Hole)

  • 조용성
    • Composites Research
    • /
    • 제37권3호
    • /
    • pp.232-237
    • /
    • 2024
  • 접착용 테이프는 다양한 기계적 강도를 요구하는 재료와 특유의 접착 물질을 결합시켜 편리하게 다양한 용도로 사용할 수 있다. 그 중 덕트 테이프(duct tape)는 대개 쉽게 구할 수 있고, 널리 사용되는 접착 테이프로 뽑을 수 있다. 덕트 테이프는 일반 테이프와 달리 섬유 소재를 함유하고 있는 복합재료이고 기계적 강도가 우수하다. 그 외에도 전선의 절연 용도로 사용되는 전기 절연테이프도 매우 오랜 기간 동안 사용되었고 실제로는 절연용도 외에도 전선의 기계적 강도 보강 및 댐핑 역할을 한다. 최근에는 다양한 종류의 폼 테이프(foam tape) 및 양면 테이프도 여러 용도로 널리 사용되고 있다. 하지만, 이러한 테이프의 소음 차단 효과에 대해서는 기존 자료에 명확하게 나타나 있지 않다. 본 연구에서는 미세한 공혈(hole)을 이용하여 다양한 테이프의 삽입손실을 측정하여 소음 차단 효과를 나타내었고, 그 중에서도 양면 폼 테이프의 소음 차단 효과가 가장 좋게 나타났다.

고온초전도 선재의 과전류 통전 특성에 대한 피치의 영향 (Influence of pitch on over-current characteristics of HTS tapes)

  • 임성우;황시돌;최효상;김헤림;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.507-510
    • /
    • 2002
  • In economical points of view, AC loss of high temperature superconducting devices is considered as a serious problem that must be solved. Expecially, in case of HTS cables, HTS tapes are wound helically on the former to reduce AC loss. Critical characteristics of HTS tapes, however, are influenced by mechanical stress as well as electrical, temperature, and magnetical factors. The purpose of this study is to investigate the over current characteristics of HTS tapes given mechanical stress when they are wound on the former. We prepared HTS tapes with the pitch angle 20$^{\circ}$, length 25cm as well as tapes with pitch angle 0$^{\circ}$. When current of over 200A$\_$rms/ was applied, we found out that there are differences to the rate of resistance increase between the case of pitch angle 20$^{\circ}$and that of 0$^{\circ}$. The rate of resistance variation in HTS tapes of pitch angle 20$^{\circ}$increased more slowly than that of pitch angle 0$^{\circ}$. As a result, we concluded that if critical characteristics of HTS tapes are degraded by any external factor, when over current is applied, the current limiting characteristics in HTS tapes won't be able to be expected any more.

  • PDF

고온초전도 선재의 과전류 통전 특성 (Over critical current characteristics of HTS tapes)

  • 임성우;황시돌;최용선;최효상;현옥배;유재무
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.241-244
    • /
    • 2002
  • We investigated over critical current characteristics of HTS tapes fabricated by KIMM. The critical current (Ic) of the HTS tapes was 68A/cm. In order to acquire over current I-V characteristics of HTS tapes, we applied AC that is 2-7 times of Ic to these tapes. When applied AC whose peak value is twice of Ic, we found out that total resistance of HTS tapes aid not change. In case of 3 times of Ic, resistances of HTS tapes began to increase slowly. However, superconducting regions of them were maintained stably in this condition. In addition, 280 $A_{peak}$was applied, superconducting regions began to be decreased gradually. Finally, 0.62m$\Omega$ of resistance was measured in HTS tapes which was applied AC correspond to 7 times of Ic at first cycle.

  • PDF

피치각에 따른 고온초전도 선재의 과전류 특성 (Over current characteristics of HTS tapes with various pitch angle)

  • 임성우;황시돌;최효상;현옥배;한병성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.961-963
    • /
    • 2002
  • When high temperature superconducting(HTS) tapes are wound on former for HTS cable application, their critical characteristics are likely to be degraded seriously because of mechanical stress. In this study, prior to fabricate prototype HTS cables, we investigated the variation of critical characteristics of HTS tapes according to their pitch angles. For this work, we prepared the samples of HTS tapes on the former of which diameter is 3cm. Pitch angles of HTS tapes are $0^{\circ}$, $00^{\circ}$, $20^{\circ}$, $30^{\circ}$, $40^{\circ}$, respectively. We applied current up to 160 $A_{rms}$ to HTS tapes and investigated E-I characteristics. The critical current of HTS tapes was decreased as pitch angle increased. In addition, when the applied current was beyond their critical current, the rate of resistance increase of HTS tapes was in proportion to their critical current. Finally, We concluded that the pitch angles affected resistance increase of HTS tapes as well as critical current.

  • PDF

Investigation on the electromechanical properties of RCE-DR GdBCO CC tapes under transversely applied load

  • Gorospe, Alking B.;Shin, Hyung-Seop
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.49-52
    • /
    • 2014
  • REBCO coated conductor (CC) tapes with superior mechanical and electromechanical properties are preferable in applications such as superconducting coils and magnets. The CC tapes should withstand factors that can affect their performance during fabrication and operation of its applications. In coil applications, CC tapes experience different mechanical constraints such as tensile or compressive stresses. Recently, the critical current ($I_c$) degradation of CC tapes used in coil applications due to delamination were already reported. Thermal cycling, coefficient of thermal expansion mismatch among constituent layers, screening current, etc. can induce excessive transverse tensile stresses that might lead to the degradation of $I_c$ in the CC tapes. Also, CC tapes might be subjected to very high magnetic fields that induce strong Lorentz force which possibly affects its performance in coil applications. Hence, investigation on the delamination mechanism of the CC tapes is very important in coiling, cooling, operation and design of prospect applications. In this study, the electromechanical properties of REBCO CC tapes fabricated by reactive co-evaporation by deposition and reaction (RCE-DR) under transversely applied loading were investigated. Delamination strength of the CC tape was determined using the anvil test. The $I_c$ degraded earlier under transverse tensile stress as compared to that under compressive one.

Critical current characteristic of various 2G HTS multi-stacked tapes depending on the low external magnetic field

  • Kim, J.;Lee, W.S.;Jin, H.;Ko, T.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권1호
    • /
    • pp.27-31
    • /
    • 2014
  • 2G HTS tapes are widely used for various electric machines. In addition, stacked or parallel connected HTS tapes are essentially used to raise transport current level for large capacity electric machines. Therefore, critical current characteristic of stacked tapes need to be studied. Recently developed 2G HTS tapes are fabricated with various defects doping so that tapes possess pinning center to improve the critical current characteristic. During this process, the critical current is determined minimum value in not perpendicular magnetic field but a specific magnetic field angle according to the reported research. However, the effects of magnetic field angle to critical current of multi-stacked 2G HTS tapes have not been examined. In this paper, field coil which is a race-track coil wound by using an HTS tape with iron-core was fabricated to apply angle adjustable magnetic field to the 2G HTS tape samples. We measured critical current of single and multi-stacked two tapes that have different characteristic depending on various magnetic field angle and magnitude in liquid nitrogen environment. Furthermore, results of single and multi-stacked tapes were compared and analyzed.

Interaction of cracks and precipitate particles on the REBCO superconducting layers of practical CC tapes through fractographic observations

  • de Leon, Michael;Diaz, Mark A.;Shin, Hyung-Seop
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권3호
    • /
    • pp.7-12
    • /
    • 2020
  • Electromechanical properties of REBCO CC tapes are known to be limited by defects (cracks) that form in the brittle REBCO layer. These defects could be inherently acquired during the CC tapes' manufacturing process, such as slitting, and which can be initiated at the CC tapes' edges. If propagated and long enough, they are believed to cause critical current degradation and can substantially decrease the delamination strength of CC tapes. Currently, commercially available CC tapes from various manufacturers utilize different growth techniques for depositing the REBCO layers on the substrates in their CC tapes preparation. Their epitaxial techniques, unfortunately, cannot perfectly avoid the formation of particles, in which sometimes acts as current blocking defects, known as outgrowths. Collective research regarding the composition, size, and formation of these particles for various CC tapes with different deposition techniques are particularly uncommon in a single study. Most importantly, these particles might interact in one way or another to the existing cracks. Therefore, systematic investigation on the interactions between the cracks' development mechanism and particles on the REBCO superconducting layers of practical CC tapes are of great importance, especially in the design of superconducting devices. Here, a proper etching process was employed for the CC tapes to expose and observe the REBCO layers, clearly. The scanning electron microscope, field emission scanning microscope, and energy-dispersive x-ray spectroscopy were utilized to observe the interactions between cracks and particles in various practical CC tapes. Particle compositions were identified whether as non-superconducting or superconducting and in what manner it interacts with the cracks were studied.