• Title/Summary/Keyword: tap water supply

Search Result 94, Processing Time 0.028 seconds

Influences of pH on Heavy Metal Leaching in Water Supply Pipelines (상수도관내 중금속 용출에 대한 수소이온농도의 영향 평가 연구)

  • Lee, Jeongwon;Noh, Yoorae;Park, Joonhong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • In Korea, previous certification of water supply infrastructure was mainly focused on economical and physical aspects. Recently, hygienic safety of water supply service has become a sensitive and important issue to our people for evaluating the water quality with growth of economy and education system. According on water quality in 497 Korean water supply facilities, pH values in the supplied water have ranged between 5.8-8.5. However, little is known about metal leachability at the pH conditions observed in the real water supply systems because a fixed pH condition (pH 7.0) has been used in the current standard method, 'Hygienic Safety Testing Method', in water supply. In this work, we examined the effects on heavy metal leachability with pH differences in the water supply pipes which are typically used in Korea. As a result, the amounts of metal leachability were tended to increase when pH levels were decreased. Especially at pH 5.8, Cu leachability from Cu pipes was found to exceed the public health standard level even after applying a normalization factor (NF) given by the current Korea standard method. The Cr and Cu leached from stainless steel pipes, Cd, Pb, Cu, and Zn from Cu-based pipe fittings, and Zn from Zn-based pipe fittings were exceeded the Korean hygienic safety standards while, after applying the NF, concentrations of the leached metals were satisfied with the current Korean standard. The findings from this work provide implications on the needs of reforming the current hygienic safety standard methodology.

A Microbiological Study on the Tap Water in Seoul (서울시 수도수 중의 위생물학적 조사연구)

  • 조영채
    • Journal of Environmental Health Sciences
    • /
    • v.7 no.1
    • /
    • pp.33-41
    • /
    • 1981
  • This study was carried out to investigate Water Temperature, Residual Chlorine, Coliform Groups, and the Standard Plate Counts of Water Supply Areas provided by 7 Water Purification Plant (W.P.P) in Seoul from September 20, 1979 through October 20, 1979. The results were summarized below: 1) The mean water temperature of the 63 Water Samples was 19.8$\circ$C, the mean pH 7.18, and the mean residual chlorine concentration 0.52 ppm by each Water Supply Areas. There is no statistically significant differences between the WPP Areas, but there is significant differences between water supply areas. 2) 30(47.6%) out of the 63 Water Samples were Standard Plate Counts free and 33 Samples (52.4%) were contaminated by Standard Plate Counts. 30 (47.6%) out of 33 samples showed the existence of Standard Plate Counts less than 15 and the other 3 samples 15-30. 3) 2 (3.2%) out of the 63 Samples had the coliform. Those 2 Samples had 2 and 6 coliform group counts per 50ml respectively both of them were 0.1ppm in residual chlorine. 4) There is correlation among Water Temperature, pH, Residual Chlorine, Standard Plate Counts, and Coliform Groups. The Coefficient of Correlation(r) between Water Temperature & Residual Chlorine was 0.147, 0.240 between Water Temperature & Standard plate Counts and 0.215 between pH & Standard Plate Counts. These correlations are statistically no significant, But the correlation of coefficient between pH & Residual Chlorine was -0.291 which is showed significant correlation at p<0.05. The coefficient of correlation between Residual Chlorine & Standard Plate Counts was -0.441 which is showed Negative Correlation Statistically Significant difference at p<0.01.

  • PDF

Site Suitability Analysis for Riverbank Filtration Using Game Theory (게임이론을 활용한 강변여과 개발 적지선정)

  • Lee, Sang-Il;Lee, Sang-Sin
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.95-104
    • /
    • 2010
  • The tap water supply in Korea mainly depends on the surface water. However, the advanced water purification process becomes a necessity due to the deterioration of surface water quality and the risk of accidental spill. High cost of water treatment and public concerns make the decision makers turn to riverbank filtration as an alternative to the surface water. Riverbank filtration has been employed for water supply in many developed countries for more than 150 years. In Korea, riverbank filtration has drawn attention since 1990s as a supply source having potential to stably meet the ever-increasing water demand. Some cities located in the Nakdong River Basin are currently supplying water through riverbank filtration. This work studies the site suitability analysis for riverbank filtration using game theory. Theory of games, which is a branch of applied mathematics used in social sciences (most notably economics), biology, engineering and computer science, was applied to candidate locations for the selection of riverbank filtration site. We proposed a policy game model as a new method adopting a probabilistic approach. The model developed turned out to be an effective tool for site selection.

Research on Advanced Measures for Emergency Response to Water Accidents based on Big-Data (빅데이터 기반 수도사고 위기대응 고도화 방안에 관한 연구)

  • Kim, Ho-sung;Kim, Jong-rip;Kim, Jae-jong;Yoon, Young-min;Kim, Dae-kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.317-321
    • /
    • 2022
  • In response to Incheon tap water accident in 2019, the Ministry of Environment has created the "Comprehensive Measures for Water Safety Management" to improve water operation management, provide systematic technical support, and respond to accidents. Accordingly, K-water is making a smart water supply management system for the entire process of tap water. In order to advance the response to water accidents, it is essential to secure the reliability of real-time water operation data such as flow rate, pressure, and water level, and to develop and apply a warning algorithm in advance using big data analysis techniques. In this paper, various statistical techniques are applied using water supply operation data (flow, pressure, water level, etc) to prepare the foundation for the selection of the optimal operating range and advancement of the monitoring and alarm system. In addition, the arrival time is analyzed through cross-correlation analysis of changes in raw water turbidity between the water intake and water treatment plants. The purpose of this paper is to study the model that predicts the raw water turbidity of a water treatment plant by applying raw water turbidity data considering the time delay according to the flow rate change.

  • PDF

Rechlorination for residual chlorine concentration equalization in distribution system (급배수시스템에서 잔류염소 농도 균등화를 위한 재염소 처리)

  • Kim, Jinkeun;Han, Ji-An
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.91-101
    • /
    • 2014
  • Three water treatment plants(WTPs) in Jeju island whose source water have different characteristics from those of the mainland of Korea were investigated. Coefficients of bulk water decay($k_b$) of free chlorine at $5^{\circ}C$ for ES, GJ, NW WTPs were $-0.003hr^{-1}$, $-0.002hr^{-1}$ and $-0.001hr^{-1}$ respectively based on bottle tests. To simulate the free chlorine variations in the distribution system using EPANET, ES WTP was chosen. Free chlorine concentrations of several sites were less than the drinking water quality standards(i.e., 0.1 mg/L); E5(0.03 mg/L), E6(0.02 mg/L), W21(0.02 mg/L) and W25(0.03 mg/L). To maintain more than 0.1 mg/L of free chlorine in the distribution system, at least 1.9 mg/L of chlorine was needed at the WTP, which suggested rechlorination was needed to supply palatable tap water to customers. Two sites, one that diverged into E5 and E6 in the east-line and another located before E21 in the west-line were selected for the appropriate rechlorination locations. The recommended rechlorination dosages were 0.42 mg/L for the east and 0.27 mg/L for the west. The simulated results indicated that the free chlorine could be reduced to 0.4 mg/L at the WTP with rechlorination, and taps with excessive free chlorine could be more stabilized(i.e., 0.1~0.4 mg/L).

Empirical study on inhibition effect of scale and rust in tap-water line by zinc ionization device (아연 이온화 장치에 의한 상수배관 내 스케일 및 녹 생성 억제효과 실증 연구)

  • Yum, Kyung-Taek;Choi, Jung-Wook;Yang, Sung-Bong;Shim, Hak-Sup;Yu, Mee-Seon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.465-476
    • /
    • 2021
  • Scale and rust generation in water pipes is a common phenomenon when cast iron water pipes have been used for a long time. A physical water treatment device is known among various means for suppressing rust in a water pipe, and a zinc ionization device for putting zinc metal into a pipe and emitting the zinc cation into water is one of such devices. This research measured the amount of zinc ion generated, which is known to exhibit an effect of inhibiting rust and scale generation in a pipe, and examined the scale and rust inhibition effect of the ionization device installed for ground or building water supply. In the case of distilled water, the concentration of zinc ion increased by circulating water in the ionization device several times, and it was verified to be hundreds of ㎍/L, and in the case of discharging ground or tap water, it was verified to be tens of ㎍/L. In addition, a verification pipe was installed to confirm the change inside the pipe before and after installation of the zinc ionization device, and the internal condition of the pipe was observed 3 months to several years after installation. It was confirmed that the corrosion area of the surface of the pipe was no longer increased by installing a corrosion inhibitor, and if the pipe was already filled with corrosion products, the amount of corrosion products gradually decreased every year after installation. The phenomenon of fewer corrosion products could be interpreted as expanding the space in the pipe due to the corrosion product as Fe2O3 adhered to the inner surface of the pipe and turned into a smaller black Fe3O4. In addition, we found that scale such as CaCO3 together in the corrosion by-products gradually decreased with the attachment of the ionization device.

A survey on the fluctuation of dissolved solids into the groundwater in Chejudo (제주도 지하수의 증분변화에 대한 고제)

  • 금성홍;신승종;오상실;송가기;오순미
    • Journal of environmental and Sanitary engineering
    • /
    • v.8 no.1
    • /
    • pp.67-80
    • /
    • 1993
  • This survey was carried out to take the status of seawater intrusion into groundwater wells located in the eastern area of Chejudo, to get the elementary data which may evaluate the level of would-be groundwater contamination, and to perform effective the effort that will supply the clear water for the residents. The sampling sites were northeastern districts of Haengwon, Handong, and Sangdo, southeastern districts of Susan, Nansan, and Samdal, and northwestern districts, as reference, of Aewol, Keumnung, Panpo, Kosan, Shindo, and Bosung. We collected the samples from the public tap water by month, and analysed electrical conductivity, sodium(Na), potassium(K), magnesium(Mg), calcium(Ca), bicarbonate($HC0_{3^-}$), and items of the criteria as drinking water. In the northeastern districts we also added the sampling sites to survey the fluctuations of dissolved solids according to distance from seashore, including two private boreholes and one public tap water of Dukchun. The result is as follows 1) In the northeastern district, the concentration of chloride ion showed large fluctations from 40mg/l to 100mg/l, but suitable for the criteria of drinking water. It was thought that the drought influenced. 2) In the Sangdo of the northeastern districts, similar tendancy to Hangwon and Handong was showed only in the concentration of chloride ion, but different tendancy was showed in chloride-bicarbonate ratio, calcium-magnesium ratio, and sodium adsorption ratio(SAR). Considering these facts, it was not thought that seawater intruded. 3) The components of Na and Cl showed rapid slope in the northeastern districts above 3km from seashore. 4) In the northwestern districts as reference, the concentration of chloride ion fluctuated slightly according to the sampling sites and dates, and the concentration of nitrate-nitrogen in some sites exceeded the criteria of drinking water. These were thought that the surface contaminants rather than the intrusion of seawater influenced mainly the groundwater, considering the correlation(r=0.732) of chloride ion and nitrate-nitrogen. 5) Then we must consider the regional characteristies of soil profile in order to prevent the contamination of groundwater, and moniter also the movement of main components within the sol1 profile, not only the research of the intrusion of seawater.

  • PDF

Biological Monitoring of Arsenic Concentrations According to Exposure to Arsenic-contaminated Ground Water (모 지역 소규모급수시설 비소검출에 따른 생물학적 노출 평가)

  • Seo, Jeong-Wook;Choi, Jae-Won;Oh, Yu-jin;Hong, Young-Seoub
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.513-524
    • /
    • 2020
  • Objective: The main purpose of this study is to evaluate the environmental and biological exposure of local residents who consumed arsenic-contaminated drinking water for less than one year. Methods: As a part of water quality inspections for small-scale water supply facilities, surveys were conducted of residents of two villages that exceeded the arsenic threshold for drinking water. The environmental impact survey consisted of surveys on water quality, soil, and crops in the surveyed area. Biological monitoring was performed by measuring the separation of arsenic species in urine and total arsenic in hair. Results: In the results of biological monitoring, the concentrations of AsIII and AsV were 0.08 and 0.16 ㎍/L, respectively. MMA and DMA were 0.87 and 36.19 ㎍/L. There was no statistically significant difference between the group who drank arsenic-removed groundwater or water from the small-scale supply facility and the group who drank tap water, purified water, or commercial bottled water. Some of the water samples exceeded the arsenic threshold for drinking water. There were no samples in the soil or rice that exceeded the acceptable threshold. Conclusion: In the case of short-term exposure to arsenic-contaminated drinking water for less than one year, there were no significant problems of concern from the evaluation of biological monitoring after arsenic was removed.

Effect of Fluoride on Dental Caries, Missing and Filling(DMF) of School Children by Fluoridated Drinking Water Supply, Topically Applied Fluoride and Non Fluoridated Water (상수도수 불소화지역과 불소용액 양치지역의 치아우식증 발생 비교조사)

  • Son, Eun-Young;Roh, Pyong-Ui;Bin, Sung-Oh
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.2 no.1
    • /
    • pp.31-40
    • /
    • 2001
  • A study of fluoride effects on teeth of school children was conducted in order to determine the usefulness of fluoride for preventing dental caries. Nine hundred and thirty six(936) elementary school children were selected from Chongju where children drank fluoridated water. Eight hundred and thirty six(836) from Seoul where children applied fluoride topically, and eight hundred and three(803) from Kumi where the children drank non fluoridated water(control). DMFs of school children were compared by the sources of fluoride. This study was conducted from May 1, through June 15, 2000. The results are summarized as follows; 1. The DMF rate of male school children topically applying fluoride was 51.4%, that of female children was 56.1%, and that of both males and females was 54.0%, The DMF rate of male children of control group was 72.4%, that of females was 77.5% and that of both males and females was 74.8%. 2. The DMF rate of male children drinking fluoridated tap water was 56.1%, that of females was 54.1%, and that of both males and females was 55.5%. The rates of control group were 72.4% for males, 77.5% for females and 74.8% for male and female children respectively. 3. The difference of DMF rates between the group of children who drank fluoridated water and applied fluoride topically, and control group was statistically significant. 4. The difference of DMF rates between the children who drank fluoridated water and the children who applied fluoride topically were not statistically significant. 5. The difference of DMFT rates between 5th graders who applied fluoride topically and the 5th graders of control group was not statistically significant. However, the difference of DMFT rates of the 6th graders who applied fluoride topically and the same graders of control group were statistically significant. The difference of DMF rates between 5th and 6th graders who drank fluoridated tap water and the same graders of control group was statistically significant. 6. The difference of DMFT rates between children drinking fluoridated tap water and children applying fluoride topically was statistically significant.

  • PDF

A mini-review on microplastics in drinking water treatment processes (정수처리장 내의 미세플라스틱의 유입 및 처리기술 현황에 관한 고찰)

  • Choi, Byeonggyu;Kim, Jiyoon;Choi, Soohoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.357-371
    • /
    • 2020
  • Microplastics have become a rising issue in due to its detection in oceans, rivers, and tap water. Although a large number of studies have been conducted on the detection and quantification in various water bodies, the number of research conducted on the removal and treatment of microplastics are still comparatively low. In the current research, the inflow and removal of microplastics were investigated for various drinking water treatment plants around the world. Addition to the investigation of filed research, a survey was also conducted on the current research trend on microplastic removal for different treatment processes in the drinking water treatment plants. This includes the researches conducted on coagulation/flocculation, sedimentation, dissolved air flotation, sand filtration and disinfection processes. The survey indicated mechanisms of microplastic removal in each process followed by the removal characteristics under various conditions. Limitations of current researches were also mentioned, regarding the gap between the laboratory experimental conditions and field conditions of drinking water treatment plants. We hope that the current review will aid in the understanding of current research needs in the field of microplastic removal in drinking water treatment.