• Title/Summary/Keyword: tap water supply

Search Result 94, Processing Time 0.027 seconds

Prioritization decision for hazard ranking of water distribution network by cluster using the Entropy-TOPSIS method (Entropy-TOPSIS 기법을 활용한 군집별 상수도관망 위험도 관리순위 결정)

  • Park, Haekeum;Kim, Kibum;Hyung, Jinseok;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.517-531
    • /
    • 2021
  • The water supply facilities of Korea have achieved a rapid growth, along with the other social infrastructures consisting a city, due to the phenomenon of urbanization according to economic development. Meanwhile, the level of water supply service demanded by consumer is also steadily getting higher in keeping with economic growth. However, as an adverse effect of rapid growth, the quantity of aged water supply pipes are increasing rapidly, Bursts caused by pipe aging brought about an enormous economic loss of about 6,161 billion won as of 2019. These problems are not only worsening water supply management, also increasing the regional gap in water supply services. The purpose of this study is to classify hazard evaluation indicators and to rank the water distribution network hazard by cluster using the TOPSIS method. In conclusion, in this study, the entropy-based multi-criteria decision-making methods was applied to rank the hazard management of the water distribution network, and the hazard management ranking for each cluster according to the water supply conditions of the county-level municipalities was determined according to the evaluation indicators of water outage, water leakage, and pipe aging. As such, the hazard ranking method proposed in this study can consider various factors that can impede the tap water supply service in the water distribution network from a macroscopic point of view, and it can be reflected in evaluating the degree of hazard management of the water distribution network from a preventive point of view. Also, it can be utilized in the implementation of the maintenance plan and water distribution network management project considering the equity of water supply service and the stability of service supply.

Manganese treatment to reduce black water occurrence in the water supply

  • Kim, Jinkeun
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.230-236
    • /
    • 2015
  • 26 multi-regional water treatment plants (WTPs) were investigated, to determine the characteristics of manganese (Mn) concentration and removal in Korea. Mn concentrations of raw water in most WTPs were higher than the drinking water standard (i.e., 0.05 mg/L); thus, proper removal of Mn at the WTPs is needed. Mn concentration was generally higher in lakes than rivers due to seasonal lake turnovers. The Mn concentrations of treated water at 26 WTPs in 2012 were less than 0.05 mg/L, due to strict law enforcement and water treatment processes optimization. However, before 2010, those concentrations were more than 0.05 mg/L, which could have led to an accumulation of Mn oxides in the distribution system. This could be one of the main reasons for black water occurrence. Therefore, regular monitoring of Mn concentration in the distribution system, flushing, and proper Mn removal at WTPs are needed, to supply clean and palatable tap water.

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks (저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구)

  • Noh, Yoorae;Kim, Sang-Hyo;Choi, Sung-Uk;Park, Joonhong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.63-75
    • /
    • 2016
  • For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

The Component Analysis of Foreign Substance Occurred in Water Distribution Networks (상수관망에서 발생하는 이물질의 성분분석)

  • Choi, Min-Ah;Kim, Do-Hwan;Bae, Chul-Ho;Lee, Doojin;Choi, Doo Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.614-623
    • /
    • 2014
  • Customers water quality complaints by foreign substance in local water service can be able to call the main cause bring the distrust for tap water and inhibiting the rate of drinking water. In this study, foreign substances were collected in the target region. Foreign objects were subjected to qualitative and quantitative analysis of compounds and elements components to reveal the cause of detection. Also, resolve the complaints by foreign substance and improve the reliability for tap water providing high quality water supply scheme. Collected substances at the water quality complaint area were included in inorganic compounds due to internal corrosion and aging pipeline, as well as organic compounds containing a large amount of carbon (C) and oxygen (O) component. To decide and reduce for foreign substance, objective assessment of pipe condition in target area was required.

Investigation of N-nitrosamines using GC-MS/MS in Han-river Water Supply Systems (GC-MS/MS를 이용한 한강수계 및 상수도계통에서 N-nitrosamines 조사)

  • Yoon, Woo-hyun;Lee, Jun-ho;Lee, Hyun-ju;Lee, Su-won;Ahn, Jae-chan;Kim, Bog-soon
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.410-418
    • /
    • 2016
  • This study was conducted to improve the analysis method used for N-nitrosamines and to investigate the occurrences of N-nitrosamines in tributaries of the Han-river, intake stations, water treatment plants and tap water used within the city of Seoul. The samples were pretreated through a solid phase extraction and analyzed using a gas chromatography tandem mass spectrometer (GC-MS/MS). The GC-MS/MS in CI mode was compared with the GC-MS/MS in EI mode by the method detection limits (MDLs). MDLs by GC-CI/MS/MS and GC-EI/MS/MS were 0.2 ~ 1.1 ng/L and 0.2 ~ 1.4 ng/L, respectively. Samples were collected from ten tributaries of the Han-river (T1 ~ T10), six intake stations (I1 ~ I6), six water treatment plants (P1 ~ P6) and 25 taps in Seoul city. The maximum levels of N-nitrosodimethylamine (NDMA) were 0.013 μg/L, 0.008 μg/L, 0.006 μg/L and 0.002 μg/L in tributary water, raw water, finished water and tap water samples, respectively. Detected levels were much lower than 0.1 μg/L corresponding to the guideline value of WHO.

Study on corrosion characteristics of treatment plants in Korea (국내 정수장의 부식성 특성 연구)

  • Min, Byung-dae;Chung, Hyen-mi;Lee, Lee-nae;Choi, Inchol;Ahn, Kyunghee;Park, Ju-hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.707-714
    • /
    • 2016
  • In order to prevent secondary pollution of tap water, corrosion characteristics are investigated, and corrosion index are calculated using LI and LR to manage corrosiveness. As targeted water treatment plants from 2014 (July, once) to 2015 (July and October, 2 times), 70 plants are selected by making a division for each area and water system. (treated water samples, n=240, raw water samples, n=72). In result of pH analysis, treated water was lower than raw water to 7.12, and 7.29, respectively. LI were investigated in the order of Seomjin river, Nakdong river, Han river, Geum river, to -2.08, -1.24, -1.11, -1.10 (at raw water), and -2.18, -1.59, -1.51, -1.35 (at treated water), respectively. In case of water quality goal value (LI = -1) in Japan as control of corrosiveness, management object was investigated about 83.3%.

Corrosion control technology in water pipes by adjusting the corrosivity of drinking water : effect and impact of the lime dispersion system (수돗물 부식성 제어를 통한 수도관 부식방지기술: 석회수 분산화장치를 이용한 미네랄 공급 효과와 영향 분석)

  • Han, Keum-Seok;Park, Young-Bok;Kim, Seong-Jae;Kim, Hyen-Don;Choi, Young-June;Park, Ju-Hyun;Woo, Dal-sik;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • Corrosion inhibitors including calcium hydroxide have been used to prevent corrosion in the pipes for tap water supply. The corrosion index (i.e., Langelier Index) differs by area and water quality. The corrosion indices of the areas studied differed by more than 2.0. The 'homogenized' calcium hydroxide was added to the treated water at the K water treatment plant, in order to increase the value of the corrosion index and the concentration of calcium. As the result, the concentration of calcium was increased while the turbidity and pH changed little. The corrosion rate of the tap water with the 'homogenized' calcium hydroxide could be slowed down pretty much. The results suggested that the technology of 'homogenization' of calcium hydroxide can applied to tap water and desalinated water to prevent corrosion in water pipes even in corrosive pipes.

Development of Three-Way Proportional Control Valve and Performance Study (3방 비례제어 조절밸브 개발 및 성능 연구)

  • Lee, Jonghwa;Jung, Taeksu;Cho, Chongdu;Kim, Jooyong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.218-223
    • /
    • 2014
  • Korea District heating corp. recently give an attention to combine the district heating and supply pipes as a two pipe system that are in the present system separated with room heating and warm water supply pipe, and the two pipe system is commonly applied for heating service in European countries. In the new two pipe system, only one heat source is supplied to a house and partitioned into room heating and warm water supply by household substation. So the effective distribution of supplied heat source in accordance to user intention is very important. This paper presents the development and performance test of three-way proportional control valve for a combined heat source system in district heating. The proposed valve is controlled to partition heat source into two different directions : hot water distributor for space heating and household substation for warm water supply in response to the pressure drops of tap water caused by the user. The performance investigation is shown within 3% of error compared to the theoretical model of the three-way proportional valve and its controllability is verified.

Establishment of AI-based composite sensor pre-verification system for energy management and composite sensor verification in water purification plant (정수장에서의 에너지 관리 및 복합센서 검증을 위한 AI 기반 복합센서 사전검증시스템 구축)

  • Kim, Kuk-Il;Sung, Min-Seok;An, Sang-Byung;Hong, Sung-Taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.43-46
    • /
    • 2022
  • The optimal operation of the water purification plant can be carried out only when the required flow rate is supplied in a timely manner using the minimum electrical energy by accurately predicting the pattern and amount of tap water used in the consumer. In order to ensure the stability of tap water production and supply, a system that can be pre-verified before applying AI-based composite sensors to the water purification plant was established to derive complementary matters through the pre-verification model for each composite sensor and improve the quality and operation stability of the composite sensor data.

  • PDF

Characteristics of Corrosion and Water Quality in Simulated Reclaimed Water Distribution Pipelines (모형 재이용관을 이용한 하수재이용수의 부식 및 수질영향 연구)

  • Kang, Sung-Won;Lee, Jai-Young;Lee, Hyun-Dong;Kim, Gi-Eun;Kwak, Pill-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.473-479
    • /
    • 2012
  • Water reuse has been highlighted as a representative alternative to solve the lacking water resource. This study carried out a study on the pipe corrosion and water quality change which can occur through the supply of reclaimed water, using a simulated reclaimed water distribution pipeline. Galvanized steel pipe (GSP), cast iron pipe (CIP), stainless steel pipe (STSP) and PVC pipe (PVCP) were used for the pipe materials. Reclaimed water(RW) and tap water(TW) were respectively supplied into simulated reclaimed water distribution pipelines. As a result of performing a loop test to supply reclaimed water to simulated reclaimed water distribution pipelines, the weight reduction of pipe coupons showed the sequence of CIP > GSP > STSP ${\approx}$ PVCP. In addition, reclaimed water showed a high corrosion rate comparing to that of tap water. In case of CIP, the initial corrosion rate showed 3.511 mdd(milligrams per square decimeter per day) for reclaimed water and 2.064 mdd for tap water and the corrosion rate for 90 days showed 0.833 mdd for reclaimed water and 0.294 mdd for tap water. Also in case of GSP, the initial corrosion rate showed 2.703 mdd for reclaimed water and 2.499 mdd for tap water and the corrosion rate for 90 days showed 0.349 mdd for reclaimed water and 0.248 mdd for tap water, which was a tendency similar to that appeared in CIP with a tendency to reduce the corrosion rate. As a result of water quality changes of reclaimed water at pipe materials to carry out the loop test, there was higher conversion ratio of ammonia into nitrate in CIP and GSP with higher corrosion rate than that in STSP and PVCP where no corrosion has occurred. The highest denitrification rate of nitrate could be observed from CIP with the most particles generated from corrosion. In CIP, it could be confirmed that there was MIC (Microbiologically Induced Corrosion) as a result of EDS (Energy Dispersive X-ray spectrometer System) analysis results.