• Title/Summary/Keyword: tangential stiffness matrix

Search Result 23, Processing Time 0.022 seconds

Inelastic Buckling Analysis of Semi-rigid Frames with Shear Deformations by Haringx's Theories (Haringx의 전단변형 이론을 고려한 부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.64-71
    • /
    • 2014
  • The generalized tangential stiffness matrix of semi-rigid frame element with shear deformations based on Haringx's shear theory is newly derived and compared with the previous study based on Engesser's shear theory. Also, linearized elastic and geometric stiffness matrices are newly presented from the exact tangential stiffness matrix. In oder to obtain the inelastic system buckling load of shear flexible semi-rigid frame structure, the Ef method by tangential modulus theory is adopted and the FE analysis programs are developed. Finally, the shear and semi-rigid effects of system bucking are investigated by two numerical examples.

Stability and P-Δ Analysis of Generalized Frames with Movable Semi-Rigid Joints (일반화된 부분강절을 갖는 뼈대구조물의 안정성 및 P-Δ 해석)

  • Min, Byoung Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.409-422
    • /
    • 2013
  • For stability design and P-${\Delta}$ analysis of steel frames with semi-rigid connections, the explicit form of the exact tangential stiffness matrix of a generalized semi-rigid frame element having rotational and translational connections is firstly derived using the stability functions. And its elastic and geometric stiffness matrix is consistently obtained by Taylor series expansion. Next depending on connection types of semi-rigidity, the corresponding tangential stiffness matrices are degenerated based on penalty method and static condensation technique. And then numerical procedures for determination of effective buckling lengths of generalized semi-rigid frames members and P-${\Delta}$ and shortly addressed. Finally three numerical examples are presented to demonstrate the validity and accuracy of the proposed method. Particularly the minimum braced frames and coupled buckling modes of the corresponding frames are investigated.

A Study on the Ultimate Strength Analysis of Frame Structures by Idealized Structural Unit Method (이상화 구조요소법에 의한 골조구조물의 최종강도해석에 관한 연구)

  • 백점기;임화규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.28-33
    • /
    • 1990
  • This paper presents an efficient and accurate method for nonlinear analysis of frame structures by idealized structural unit method. The main idea behind the present method is to minimize the cost of the computational effort by reducing the number of unknowns. An explicit form of the tangential elastic stiffness matrix of the element is derived by using updated Lagrangian approach. An ultimate limit state of the element is judged on the basis of the formation of a plastic hinge mechanism. The elasto-plastic stiffness matrix and the post-ultimate stiffness matrix of the element are formulated by plastic node method. A comparison between the present method is very efficient and accurate because the computing time required is very small while giving the accurate solution.

  • PDF

Inelastic Buckling Analysis of Frames with Semi-Rigid Joints (부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.143-154
    • /
    • 2014
  • An improved method for evaluating effective buckling length of semi-rigid frame with inelastic behavior is newly proposed. Also, generalized exact tangential stiffness matrix with rotationally semi-rigid connections is adopted in previous studies. Therefore, the system buckling load of structure with inelastic behaviors can be exactly obtained by only one element per one straight member for inelastic problems. And the linearized elastic stiffness matrix and the geometric stiffness matrix of semi-rigid frame are utilized by taking into account 4th terms of taylor series from the exact tangent stiffness matrix. On the other hands, two inelastic analysis programs(M1, M2) are newly formulated. Where, M1 based on exact tangent stiffness matrix is programmed by iterative determinant search method and M2 is using linear algorithm with elastic and geometric matrices. Finally, in order to verify this present theory, various numerical examples are introduced and the effective buckling length of semi-rigid frames with inelastic materials are investigated.

Exact Tangent Stiffness Matrix and Buckling Analysis Program of Plane Frames with Semi-Rigid Connections (부분강절로 연결된 평면뼈대구조의 엄밀한 접선강도행렬 및 안정성 해석프로그램 개발)

  • Min, Byoung Cheol;Kyung, Yong Soo;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Generally the connection of members is defined as hinge or rigid. But, real joints on structure have to be considered semi-rigid connections because this permits relative rotation for members on joints. The purpose of this study is to derive a generalized tangential stiffness matrix of frames with semi-rigid connections and to develop a buckling analysis program. For the exact stiffness matrix, an accurate displacement field is introduced using an equilibrium equation for beam-columns under the bending and axial forces. Also, stability functions that consider sway deformation and force-displacement relations with rotational spring on ends were defined. In order to illustrate the accuracy of this study and the characteristics of semi-rigid for system buckling load, samples of angle-, portal- and 3-story frames with semi-rigid connections are presented, where the proposed approach is found to be in excellent agreement with other research results. Meanwhile, the application of codes such as Eurocode 3 and LRFD led to significant inaccuracies.

Unstable Behaviour and Critical Buckling Load of Framed Large Spatial Structures in accordance with the Variation of Joint Rigidity (프레임형 대공간 구조물의 절점강성변화에 따른 불안정 현상과 임계좌굴하중)

  • Shon, Su-Deok;Lee, Seung-Jae;Lee, Dong-Woo;Kim, Seung-Deog
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.3
    • /
    • pp.47-56
    • /
    • 2014
  • This paper investigates the characteristics of unstable behaviour and critical buckling load by joint rigidity of framed large spatial structures which are sensitive to initial conditions. To distinguish the stable from the unstable, a singular point on equilibrium path and a critical buckling level are computed by the eigenvalues and determinants of the tangential stiffness matrix. For the case study, a two-free node example and a folded plate typed long span example with 325 nodes are adopted, and these adopted examples' nonlinear analysis and unstable characteristics are analyzed. The numerical results in the case of the two-free node example indicate that as the influence of snap-through is bigger; that of bifurcation buckling is lower than that of the joint rigidity as the influence of snap-through is lower. Besides, when the rigidity decreases, the critical buckling load ratio increases. These results are similar to those of the folded-typed long span example. When the buckling load ratio is 0.6 or less, the rigidity greatly increases.

Micromechanical behavior of unidirectional composites under a transverse shear loading (횡방향 전단하중을 받는 단일방향 복합재료의 미시역학적 거동연구)

  • Choi, Heung-Soap;Achenbach, J.D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1896-1911
    • /
    • 1997
  • Effects of fiber-matrix interphases on the micro-and macro-mechanical behaviors of unidirectionally fiber-reinforced composites subjected to transverse shear loading at remote distance have been studied. The interphases between fibers and matrix have been modeled by the spring-layer which accounts for continuity of tractions, but allows radial and circumferential displacement jumps across the interphase that are linearly related to the normal and tangential tractions. Numerical calculations for basic cells of the composites have been carried out using the boundary element method. For an undamaged composite the micro-level stresses at the matrix side of the interphase and effective shear stiffness have been computed as functions of fiber volume ratio $V_f$ and interphase stiffness k. Results are presented for various interphase stiffnesses from the perfect bonding to the case of total debonding. For a square array composite the results show that for a high interphase stiffness k>10, an increase of $V_f$ increases the effective transverse shear modulus G over bar of the composite. For a relatively low interphase stiffness k<1, it is shwon that an increase of $V_f$ slightly decreases the effective transverse shear modulus. For the perfect bonding case, G over bar for a hexagonal array composite is slightly larger than that for a square array composite. Also for a damaged composite partially debonded at the interphase, local stress fields and effective shear modulus are calculated and a decrease in G over bar has been observed.

Ultimate Strength Analysis of Framed Structures Using Idealized Structural Unit Method (이상화구조요소법에 의한 골조구조물의 최종강도해석에 관한 연구)

  • 백점기;임화규
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.83-94
    • /
    • 1991
  • This paper presents an efficient and accurate method for nonlinear analysis of frame structures by idealized structural unit method. The main idea behind the present method is to minimize the computational effort by reducing the number of unknowns. An explicit form of the tangential elastic stiffness matrix of the element is derived by the principle of virtual work. The ultimate limit state of the element is judged on the basis of the formation of a plastic hinge mechanism. The elasto-plasto-plastic stiffness matrix of the element is derived by plastic node method and the post-ultimate stiffness equation is formulated under a simple analytic consideration. A comparison between the present solution and the existing experimental and other numerical result for unit column member and simple frame structure is made. If is clear from the result of this study that the present method is very useful because the computing time required is very small while giving the accurate solution.

  • PDF

Free vibration analysis of large sag catenary with application to catenary jumper

  • Klaycham, Karun;Nguantud, Panisara;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.67-86
    • /
    • 2020
  • The main goal of this study is to investigate the free vibration analysis of a large sag catenary with application to the jumper in hybrid riser system. The equation of motion is derived by using the variational method based on the virtual work principle. The finite element method is applied to evaluate the numerical solutions. The large sag catenary is utilized as an initial configuration for vibration analysis. The nonlinearity due to the large sag curvature of static configuration is taken into account in the element stiffness matrix. The natural frequencies of large sag catenary and their corresponding mode shapes are determined by solving the eigenvalue problem. The numerical examples of a large sag catenary jumpers are presented. The influences of bending rigidity and large sag shape on the free vibration behaviors of the catenary jumper are provided. The results indicate that the increase in sag reduces the jumper natural frequencies. The corresponding mode shapes of the jumper with large sag catenary shape are comprised of normal and tangential displacements. The large sag curvature including in the element stiffness matrix increases the natural frequency especially for a case of very large sag shape. Mostly, the mode shapes of jumper are dominated by the normal displacement, however, the tangential displacement significantly occurs around the lowest point of sag. The increase in degree of inclination of the catenary tends to increase the natural frequencies.

Analytical study of elastic lateral-torsional buckling of castellated steel beams under combined axial and bending loads

  • Saoula Abdelkader;Abdelrahmane B. Benyamina;Meftah Sid Ahmed
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.343-356
    • /
    • 2024
  • This paper presents an analytical solution for correctly predicting the Lateral-Torsional Buckling critical moment of simply supported castellated beams, the solution covers uniformly distributed loads combined with compressive loads. For this purpose, the castellated beam section with hexagonal-type perforation is treated as an arrangement of double "T" sections, composed of an upper T section and a lower T section. The castellated beam with regular openings is considered as a periodic repeating structure of unit cells. According to the kinematic model, the energy principle is applied in the context of geometric nonlinearity and the linear elastic behavior of materials. The differential equilibrium equations are established using Galerkin's method and the tangential stiffness matrix is calculated to determine the critical lateral torsional buckling loads. A Finite Element simulation using ABAQUS software is performed to verify the accuracy of the suggested analytical solution, each castellated beam is modelled with appropriate sizes meshes by thin shell elements S8R, the chosen element has 8 nodes and six degrees of freedom per node, including five integration points through the thickness, the Lanczos eigen-solver of ABAQUS was used to conduct elastic buckling analysis. It has been demonstrated that the proposed analytical solution results are in good agreement with those of the finite element method. A parametric study involving geometric and mechanical parameters is carried out, the intensity of the compressive load is also included. In comparison with the linear solution, it has been found that the linear stability underestimates the lateral buckling resistance. It has been confirmed that when high axial loads are applied, an impressive reduction in critical loads has been observed. It can be concluded that the obtained analytical solution is efficient and simple, and offers a rapid and direct method for estimating the lateral torsional buckling critical moment of simply supported castellated beams.