• 제목/요약/키워드: tangential

검색결과 1,129건 처리시간 0.027초

500MW급 접선분사형 미분탄보일러의 $NO_{x}$ 저감에 관한 수치해석적 연구 (A Numerical Study on the $NO_{x}$ Reduction in 500MW Pulverized Coal Tangential Firing Boiler)

  • 최청렬;강대웅;김창녕;박만흥;김광추;김종길
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.967-972
    • /
    • 2001
  • The emission of $NO_{x}$ during coal combustion is a major reason of environment impact. $NO_{x}$ is an acid rain precursor and participates in the generation of smog through ozone production. $NO_{x}$ can be divided into thermal $NO_{x}$, fuel $NO_{x}$ and prompt $NO_{x}$. Thermal $NO_{x}$ is formed in a highly temperature condition dependent. Fuel $NO_{x}$ is dependent on the local combustion characteristics and initial concentration of nitrogen bound compound, while prompt $NO_{x}$ is formed in a significant quantity in some combustion environments, such as low temperature and short residence times. This paper presents numerical simulation of the flow and combustion characteristics in the furnace of a tangential firing boiler of 500MW with burners installed at the every comer of the furnace. The purpose of this paper is to investigate the reduction of $NO_{x}$ emission in a 500MW pulverized coal tangential firing boiler with different OFA's and burner angles. Calculations with different air flow rates of over fired air(OFA) and burner angles are performed.

  • PDF

OTF계산값을 이용한 ERF계산 (Computation of the ERF from the OTF)

  • 심상현
    • 한국광학회지
    • /
    • 제4권2호
    • /
    • pp.140-144
    • /
    • 1993
  • Optical Transfer Function(OTE)으로부터 Edge Response Function(ERF)을 계산하는 computer program을 작성하였다. 이 program을 사용하여 무수차 광학계와 몇가지 형태의 수차를 포함하는 광학계의 ERF를 계산하였다. 왜곡수차, 촛점이동, 비점수차, 코마 또는 구면수차 등의 단일수차 및 이들이 조합된 몇가지 형태의 복합수차 등을 포함하는 광학계를 고려하였다. 계산의 결과로부터 sagital case의 경우, 촛점이동이나 구면수차가 코마에 비하여 ERF에 나쁜 영향을 미치며, tangential case의 경우, 코마가 촛점이동과 구면수차보다 나쁜 영향을 미침을 알았다. 한편 코마는 tangential case의 ERF의 형태와 위치를 변화시키지만 왜곡수차는 상의 위치만을 변화시킨다는 것도 확인 할 수 있었다. 또한 코마와 왜곡수차를 포함하는 광할계의 tangential case의 ERF는 이들중 하나의 수차만 포함하는 경우보다 오히려 좋은 형태를 나타내어 두 수차가 상호 보완적인 영향을 미침을 알았다.

  • PDF

정면밀링에서 절삭력을 이용한 절입비와 절산력비의 실시간 추정 (On-line Simulaneous Identification of Immersion Ratio and Cutting Force Ratio using Cutting Forces in Face Milling)

  • 김명곤
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.91-98
    • /
    • 2000
  • In this paper , presented is a method of on-line estimation of the radial immersion ratio and cutting force ratio using cutting force. When a tooth finishes sweeping, sudden drop of cutting forces occurs. These force drops are equal to the cutting forces that act on a single tooth at the swept angle of cut and can be obtained from cutting force signals in feed and crossfeed directions. The ratio of cutting forces in feed and cross-feed directions acting on the single tooth at the swept angle of cut is a function of the swept angle of cut and the ratio of radial to tangential cutting force. In the research, it is found that the ratio of radial to tangential cutting force is not affected by cutting conditions and axial rake angle. Therefore, the ratio of radial to tangential cutting force determined by just one preliminary experiment can be used regardless of the cutting conditions. Using the measured cutting forces, the radial immersion ratio is estimated along with the cutting force ratio at that immersion angle. Various experiments show that the radial immersion ratio and instantaneous ratio of the radial to tangential direction cutting force can be estimated by the proposed method very well.

  • PDF

이동질량과 등분포접선종동력이 외팔보의 동특성에 미치는 영향 (The Influence of Moving Masses on Dynamic Behavior of a Cantilever Pipe Subuected to Uniformly Distributed Follower Forces)

  • 손인수;윤한익;김현수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.80-85
    • /
    • 2002
  • A conveying fluid cantilever pipe system subjected to an uniformly distributed tangential follower force and three moving masses upon it constitute this vibrational system. The influences of the velocities of moving masses, the distance between two moving masses. and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a cantilever pipe system by numerical mettled. The uniformly distributed tangential follower force is considered within its ciritical value of a cantilever pipe without moving masses, and three constant velocities and three constant distance between two moving masses are also chosen. When the moving masses exist on pipe, As the velocity of the moving mass and distributed tangental force increases, the deflection of cantilever pipe conveying fluid is decreased, respectively. Increasing of the velocity of fluid flow make the amplitude of cantilever pipe conveying fluid decrease. After the moving mass passed upon the pipe, the tip displacement of pipe is influenced by the potential energy of cantilever pipe.

  • PDF

목재(木材)의 치수변동(変動)에 관(關)한 연구(硏究) (Study on Movement of Wood)

  • 정희석;이필우;이남호
    • Journal of the Korean Wood Science and Technology
    • /
    • 제14권2호
    • /
    • pp.36-42
    • /
    • 1986
  • Both the control and heated specimen of oak, hornbean, alder, poplar, red pine and pitch pine among domestic commercial species and taun imported were used for radial and tangential shrinkage and movement that occurred on changing the relative humidity of the atmosphere from 90 percent to 60 percent at $25^{\circ}C$. The results of this study were as follows. 1. The radial and tangential shrinkage of the control and heated hornbean and oak wood, except alder, of high specific gravity showed greater than species with low specific gravity. The ratio of tangential to radial shrinkage was 1.46 for taun to 2.70 for alder. Green volume specific gravity of the heated and soaked specimen of all species except poplar decreased 1.5 to 3.1 percent. Shrinkage of the heated specimen increased more than that of the control specimen, and antishrink efficiency of all timbers except alder had negative value. Shrinkage from green to air dry of treated specimens increased more than case of total shrinkage, and radial shrinkage of those specimen increased greater than tangential shrinkage. 3. The movement of the heating specimen for 120 hours decreased than those of the control and the heating specimen for 240 hours. The movement of heating oak, poplar, red pine and pitch pine (or 240 hours increased rather than those of the control specimen.

  • PDF

동력전달용 평벨트의 표면모델과 수직력 및 접선력에 대한 연구 (A study on the surface model and normal and tangential forces for power transmission flat belts)

  • 김현수
    • 대한기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.772-780
    • /
    • 1987
  • 본 연구에서는 면직 및 고무 평벨트에 대하여 베트와 풀리간의 수직 및 접선 마찰력 분포를 측정하고 이들의 마찰특성을 비교하고자 하였다. 마찰접촉면적을 직 접 측정하는 대신, 표면모델에 의한 이론식을 제시하고 이론식과 실험에 의한 수직 및 접선력을 비교하여 마찰면의 표면모델과 마찰계수를 연구하였다.

Investigation of Radial Distributions of Tangential Strains and of Moisture Contents within a Log Cross Section by Circumferential Slices

  • Choi, Jun-Ho;Lee, Nam-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권2호
    • /
    • pp.20-28
    • /
    • 2008
  • This study was carried out to provide the so-called circumferential slicing method for investigating radial distributions of the tangential strains and of moisture contents within the log cross section (LC) of Kalopanax pictus during indoor drying it. While the heartwood showed an almost uniform moisture content distribution in the range of about 50~55% in case of the green wood, it has gradually decreased toward the outer side, showing about 19% of moisture content difference from the innermost slice. Although the moisture gradient along the radial direction has gradually become gentle as drying progresses, the sapwood of the outer side represented the moisture contents below the fiber saturation point after 24 hours of drying while the heartwood in the inner part showed the moisture contents higher than the fiber saturation point. The pith side was laid under the tensile stress after 24 hours of drying, and then gradually decreasing toward the bark side, and showed the distribution being switched again to the tensile stress on the bark side. As the drying has progressed, this trend got more intensified, and finally showed the U-shaped distribution model after 48 hours of drying. The circumferential slice test is considered to be suitable in quantitatively determining the tangential strains and moisture content within a LC.

Effect of external compressive load during a continuous radio-frequency /vacuum process on movement behavior

  • Lee, Nam-Ho;Jin, Young-Moon
    • 한국가구학회지
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2006
  • Movement behavior, shrinkage and equilibrium moisture content (EMC), in this experiment reflected a change of hygroscopicity mainly affected by continuously compressive load during radio-frequency/vacuum (RF/V) drying and humidity changes during equilibrating. As a result of interaction of the compressive load and moisture content changing under the RF/V condition, the shrinkages in loading direction were significantly increased while those perpendicular to loading direction were decreased. The shrinkages were affected most in tangential, and least in longitudinal direction. The shrinkages showed higher values in continuous drying than in intermittent drying. In the direction of increased shrinkage, all the movements were also increased, for example, the tangential movement for the loaded-RS and the radial movement for loaded-TS; in the direction of decreased shrinkage, all the movements except the tangential movement for the loaded-TS were decreased such as the tangential and radial movements for the loaded-ES, and the radial movement for the loaded-RS, comparing with those of the load-free. EMCs of the loaded specimens were all higher than that of the load-free specimen, and the highest for the loaded-TS, the lowest for the loaded-ES. The transverse hygroscopicity of specimen was reduced for the loaded-ES, but increased for the loaded-TS.

  • PDF

열연 슬라브 압연에서 워크롤 표면 원주방향 인장응력 감소를 위한 냉각 방법 (A Cooling Method which Reduces the Tangential Tensile Stresses on a Work Roll Surface during Hot Slab Rolling)

  • 나두현;이영석
    • 소성∙가공
    • /
    • 제21권1호
    • /
    • pp.58-66
    • /
    • 2012
  • The work roll surface temperature rises and falls repetitively during hot slab rolling because the work roll surface is cooled continuously by water. This study focused on Std. No. 7 to determine a cooling method which significantly reduces the tangential tensile stresses on the work roll surface of the hot slab mill at Hyundai Steel Co. in Korea. A series of finite element analyses were performed to compute the temperature distribution and the tensile stresses in the circumferential direction of the work roll. The virtual slab model was used to reduce the run time considerably by assigning a high temperature to the virtual slab. Except for the heat generated by plastic deformation, this is equivalent to the hot rolling condition that a high temperature slab (material) would experience when in contact with the work rolls. Results showed that when the virtual slab model was coupled with FE analysis, the run time was found to be reduced from 2000 hours to 70 hours. When the work roll surface cooled with a certain on-off patter of water spray, the magnitude of the tangential stresses on the work rolls were decreased by 54.1%, in comparison with those cooled by continuous water spraying. Savings of up to 83.3% in water usage are possible if the proposed water cooling method is adopted.

골프 공의 충돌 시 스핀 생성 원리 연구 (A Study on Golf Ball Spin Mechanism at Impact)

  • 노우진;이종원
    • 한국소음진동공학회논문집
    • /
    • 제17권5호
    • /
    • pp.456-463
    • /
    • 2007
  • It is important to improve the initial launch conditions of golf ball at impact between golf club and ball to get a long flight distance. The flight distance is greatly influenced by the initial launch conditions such as ball speed, launch angle and back spin rate. It is also important to analyze the mechanism of ball spin to improve the initial conditions of golf ball. Back spin rate is created by the contact time and force. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of ball, and the tangential force creates the spin. Especially, the tangential force is known to take either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail in the literature. In this paper, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and time at impact between golf club head and ball are computed using FEM and compared with previous results. In addition, we investigate the impact phenomenon between golf club head and ball by FEM and clarify the mechanism of ball spin creation accurately, particularly focusing on the effect of negative tangential force on ball spin rate.