• Title/Summary/Keyword: tangential

Search Result 1,129, Processing Time 0.028 seconds

Influence of Moving Masses on Dynamic Behavior of Cantilever Pipe Subjected to Uniformly Distributed Tangential Follower Forces (이동질량과 등분포접선종동력이 외팔보의 동특성에 미치는 영향)

  • 윤한익;김봉균;손인수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.430-437
    • /
    • 2003
  • A conveying fluid cantilever pipe subjected to a uniformly distributed tangential follower force and three moving masses upon it constitute this vibrational system. The influences of the velocities of moving masses, the distance between two moving masses, and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a cantilever pipe system by numerical method. The uniformly distributed tangential follower force is considered within its critical value of a cantilever pipe without moving masses, and three constant velocities and three constant distances between two moving masses are also chosen. When the moving masses exist on pipe, as the velocity of the moving mass and the distributed tangential follower force Increases. the deflection of cantilever pipe conveying fluid is decreased, respectively Increasing of the velocity of fluid flow makes the amplitude of a cantilever pipe conveying fluid decrease. After the moving mass passed upon the pipe, the tip- displacement of a pipe is influenced by the coupling effect between interval and velocity of moving mass and the potential energy change of a cantilever pipe. Increasing of the moving mass make the frequency of the cantilever pipe conveying fluid decrease.

A Study on the Optimal Angle as Modified Tangential Projection of Knee Bones (무릎뼈의 변형된 접선방향 검사 시 최적의 입사각에 관한 연구)

  • Oh, Wang-Kyun;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.919-926
    • /
    • 2021
  • In this study, we wanted to find out the optimal angle as a modified tangential projection of the patella. In the experiment, we used Kyoto Kagaku's PBU-50 phantom. In the supine position, the F-T angle was set to 95°, 105°, 115°, 125°, 135°, 145°, and Patella tangential projection images were obtained by varying the X-ray tube angle by 5° so that the angle between the X-ray centerline and tibia at each angle was 5~20°. Image J was used for image analysis and the congruence angle, lateral patellofemoral angle, patellofemoral index and contrast to noise ratio(CNR) were also measured. SPSS 22 was used for statistical analysis, and the mean values of congruence angle, patellofemoral angle, patellofemoral index, and CNR were compared with Merchant method through one-way batch analysis and corresponding sample t-test. As a result of the study, in the case of congruence angle, the angle of incidence of the knee-angle X-ray centerline was 105°-72.5° (20° tangential irradiation), 115°-72.5°, 77.5° (15, 20° tangential irradiation), 125°-82.5° (20° tangential irradiation), lateral patellofemoral angle is 115°-72.5°, 77.5° (15, 20° tangential irradiation), 125°-72.5° (10° tangential irradiation), patellofemoral index is 115°-72.5° (15° tangential irradiation) and 125°-72.5° (10° tangential irradiation) were not significantly different from Merchant method (p> .05). In case of CNR, it is not different from Merchant method at 105°-67.5°, 72.5° (15, 20° tangential irradiation), 115°-67.5°, 72.5°, 77.5° (10, 15, 20° tangential irradiation). (P> .05). Based on the results of this study, high diagnostic value images can be obtained by setting the knee angle and the angle of incidence of the X-ray tube to 115°-72.5° (15° tangential irradiation) during the modified tangential examination of the knee bone. It was confirmed.

Structural Characteristics of Turbulent Diffusion Flame Combusted with Simulated Coal Syngas

  • Park, Byung-Chul;Kim, Hyung-Taek;Chun, Won-Gee
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.350-358
    • /
    • 2002
  • The present work determined the flame structure characteristics of coal syngas combusted inside swirl burners with various nozzle types. Fuel nozzle types are largely classified into two groups of axial and tangential. Experiments were carried out for investigating the effects of fuel nozzle geometry, fuel composition ratio, heating rate, excess air, and degree of swirl on the turbulent diffusion flame structure. To determine the characteristics of the flame structure, axial type fuel nozzle diameter of laboratory-scale combustor is varied to 1.23, 1.96, and 2.95 ㎜ and the direction of tangential type nozzles are varied to radial, clockwise, and counter-clockwise. The comparison of the experimental results was performed to understand functional parameters relating the flame structure. Data analysis showed that the vertical straight flame height generally decreased with increasing swirl number and decreasing axial type nozzle diameter. Flame height established with tangential type nozzle is 3 times shorter than that with vertical type. The flame structures among the 3 different tangential fuel nozzles relatively showed no particular difference. By increasing the heating rate, the width of flame increased generally in both vertical and tangential flame. Within the present experimental parameters of the investigation, flame structure is mainly depends on the nozzle type of the combustor. The visually investigated flame lengths are confirmed through the analysis of temperature profile of each flame.

Effect of boundary conditions on the stability of beams under conservative and non-conservative forces

  • Marzani, Alessandro;Viola, Erasmo
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.195-217
    • /
    • 2003
  • This paper, which is an extension of a previous work by Viola et al. (2002), deals with the dynamic stability of beams under a triangularly distributed sub-tangential forces when the effect of an elastically restrained end is taken into account. The sub-tangential forces can be realised by a combination of axial and tangential follower forces, that are conservative and non-conservative forces, respectively. The studied beams become unstable in the form of either flutter or divergence, depending on the degree of non-conservativeness of the distributed sub-tangential forces and the stiffness of the elastically restrained end. A non-conservative parameter ${\alpha}$ is introduced to provide all possible combinations of these forces. Problems of this kind are usually, at least in the first approximation, reduced to the analysis of beams according to the Bernoulli-Euler theory if shear deformability and rotational inertia are negligible. The equation governing the system may be derived from the extended form of Hamilton's principle. The stability maps will be obtained from the eigenvalue analysis in order to define the divergence and flutter domain. The passage from divergence to flutter is associated with a noticeable lowering of the critical load. A number of particular cases can be immediately recovered.

Effects of the Leakage Tangential Velocity on the Leakage Flow Path in Shrouded Axial Compressor Cascades (축류압축기 슈라우드 캐비티내의 누수유동 경로에 대한 연구)

  • Sohn, Dae-Woong;Kim, Tong-Beum;Song, Seung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.311-317
    • /
    • 2005
  • Measurements of the leakage flow in the shrouded cavity were performed in axial compressor cascades at $Re=2.6{\times}10^5$. This paper describes the effects of the leakage flow tangential velocity on kinematics of the leakage flow in the shrouded cavity and consequent overall loss and exit flow turning at stator blade row downstream. Flow data and flow visualization images consistently indicate that leakage flow circumferentially migrates 2, 4 and 5 blade passages in the direction of rotation for ${\upsilon}_y/c=0.09$, 0.35 and 0.45, respectively where ${\upsilon}_y$ is the leakage tangential velocity and c is the mainstream velocity. The leakage flow contracts to a jet across the seal-tooth resulting in an increase in the leakage axial velocity-doubling the leakage axial velocity in upstream cavity compared to that in the downstream cavity. Consequently, two flow regions are distinguished before and after the seal-tooth. As increasing the leakage tangential velocity, the overall loss downstream of stator blade row decreases and the exit flow turning in the range of span. from the hub endwall to 15% increases while the decreases in the flow turning from 15% to 30% span is observed.

  • PDF

Three-Dimensional Steady-state Rolling Contact Analysis using Finite Element Method (3차원 유한요소법을 이용한 정상상태의 구름접촉해석)

  • Lee, Dong-Hyong;Seo, Jung-Won;Kwon, Seok-Jin;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.565-571
    • /
    • 2011
  • Because most fatigue cracks in wheel and rail take place by rolling contact of wheel and rail in railroad industry, it is critical to understand the rolling contact phenomena, especially for the three-dimensional situation. This paper presents an approach to steady-state rolling contact problem of three-dimensional contact bodies, with or without tangential force, based on the finite element method. The steady-state conditions are controlled by the applied relative slip and tangential force. The three-dimensional distribution of tangential traction and contact stresses on the contact surface are investigated. Results show that the distribution of tangential traction and contact stresses on the contact surface varies rapidly as a result of the variation of stick-slip region. The tangential traction is very close in form to Carter's distribution.

A Study on Dynamic Characteristics of Gas Centered Swirl Coaxial Injector Varying Tangential Inlet Diameter with Liquid Pulsation (기체 중심 동축형 분사기의 접선방향 유입구 지름 변화에 따른 액체 가진 연구)

  • Oh, Sukil;Park, Gujeong;Kim, Seongju;Lee, Hyeongwon;Yoon, Youngbin;Choi, Jeong-Yeol
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.62-68
    • /
    • 2017
  • It is important to study on the combustion instability to develop liquid rocket engines for preventing lower combustion efficiency and destruction of combustion chamber. There are many researches on simplex injector with liquid pulsation to solve this problem. In real rocket engine system, however, they use coaxial injectors. Therefore, research on coaxial injector with liquid pulsation is essential. In this study, we investigate dynamic characteristics of gas centered swirl coaxial injector varying tangential inlet diameter. A mechanical pulsator was used to generate an excitation in the liquid flow, and the response characteristics of the injector were confirmed. As tangential inlet diameter increased, mass flow rates increased and spray angle decreased. As tangential inlet diamter decreased, gain decreased because the pressure fluctuation in the injector manifold rarely passed through the inlet. Additionally, it was confirmed that a sufficiently small tangential inlet served as a damper.

The stress field in the body by tangential loading of a rectangular patch on a semi-infinite solid (반 무한체 위의 사각조각 면에 작용하는 접선하중에 의한 반 무한체내의 응력 해석)

  • 이문주;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.20-29
    • /
    • 1999
  • The stress field in the body by tangential loading of a rectangular patch on a semi-infinite solid has been solved analytically using Boussinesque's potential function. Its validity was proved by saint-venant's principle in remote region of the and in the vicinity of the surface with superposition of point loads.

  • PDF

A Study on Mixed Mode Crack Initiation under Static Loading Condition

  • Koo, Jea-Mean
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, several different fracture criteria using the Eftis and Subramanian's stress solutions [1] are compared with the printed experimental results under different loading conditions. The analytical results of using the solution with non-singular term show better than without non-singular in comparison with the experimental data. And maximum tangential stress criterion (MTS) and maximum tangential strain energy density criterion (MTSE) can get useful results for several loading conditions.

A Study on Separation Mechanisms in Tangential Flow Membranes (접선류 방식의 막분리 공정에 있어서 분리기구 해석에 관한 연구)

  • 이기정;허병기목영일
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.281-287
    • /
    • 1989
  • The experimental study reported herein was to investigate to separation characteristics of a tangential flow membrane in a continuous recycle situation. Physical and dynamic analyses are performed on the membrane system in order to relate relevant variables to the capacity of separation. The results of separation process may be summarized by a proposed equation:Sh=A(Re.Sc.dh/L)1/3. It was shown also by the analyses that effective separation of sugar and cell was attainable by means of tangential membranes, thereby enhancing ethanol productivity in fermentation with continuous cell and substrate recycle.

  • PDF