• 제목/요약/키워드: tamping

Search Result 49, Processing Time 0.026 seconds

Effect of Tamping Materials on the External Charge Blasting of Structural Members (부재 절단을 위한 외부장약 발파의 전색효과)

  • Yang, Hyung-Sik;Kim, Jung-Gyu;Ko, Young-Hoon;Rai, Piyush
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • External charges with four different kinds of tamping materials are tested to determine the effect of tamping on the blasting of steel components and concrete blocks. The tamping materials used are tamping cap, urethane foam, sand bag and mud. As a result, the tamping cap, urethane foam, and sand bag show no significant effect of tamping. But the mud tamping shows that the charge amount can be reduced by more than 20% in completely cutting the structural components. In addition, it is found from the test that the standard equation for calculating the proper charge is rather conservative, which means the equation overestimates the necessary charge for the blasting.

A Study on the Surface Air-Void Reduction of High Performance Concrete (고성능 콘크리트의 표면기포 저감에 관한 연구)

  • Park, Sang-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • In this study, reduction methods of surface air void were examined for high performance concrete having high viscosity. The effects of assumed influencing factors such as form types, form-coating materials, tamping equipments and methods were examined based on the tests on mock-up specimens made of high performance concrete. The test results can be summarized as follows: As for form types, the most favorable results were obtained when coated plywood form was used with panel-shape tamping equipments at the contact region with concrete, the second and the third being the water/air-permeable sheets and steel with coated plywood, respectively. As for tamping equipments, a vibrator with 6.5cm diameter was most effective. Finally, the shorter the tamping intervals, the better the reduction effect of surface air void. As a conclusion, an improved method was proposed to reduce surface air void and it was verified with the test result that only four air voids as large as $5{\sim}10mm$ are found in the are of $1m^2$.

A Study on a Mathematical Model of the Long-term Track Tamping Scheduling Problem (도상 다짐작업의 장기 일정계획 문제에 관한 수리적 모형 고찰)

  • Oh Seog-Moon;Lee Jeeha;Lee Hee-Up;Park Bum Hwan;Hong Soon-Heum
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.50-56
    • /
    • 2006
  • This paper presents a mathematical model of the long-term track tamping scheduling problem in the Korean highspeed railway system. The presented model encompasses various operational field constraints, moreover improves a state-of-the-art model in extending the feasible space. We show the model is sized up to intractable scale, then propose another approximation model that is possible to handle with the present computer system and commercial optimization package, directly. The aggregated index, lot, is selected, considering the resolution of the planning horizon as well as scheduling purpose. Lastly, this paper presents two test results for the approximation model. The results expose the approximation model to quite promising in deploying it into an operational software program for the long-term track tamping scheduling problem.

A Conceptual Design on Training Simulator of the Special Railway Vehicle for Multiple Tie Tamper (궤도보수 특수철도차량 탬퍼 모의훈련연습기의 개념설계)

  • Ahn, Seung-Ho;Kang, Jeong Hyung;Kim, Chul Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.430-436
    • /
    • 2018
  • Special railway vehicles for track maintenance are equipped with a tamping device that adjusts various track trajectories to reduce the vibration of rolling stock and improve ride quality during trains passing over a track. The development of a simulator that can confirm the error of the actual tamping work is important for reducing human error in the linearization of the track misalignment. In this study, to improve the reality and training effect of conventional 2D simulator, 3D simulator modeling was implemented for tamping work of special railway vehicles in virtual space. The problem of buffering during high screen quality of tamping work was solved using the Unwrap UVW mapping technique of a low polygon extracted from high quality polygon modeling. The human error in the training of the tamping work was detected by the principle of circle and square collision when the tamping tyne and the sleeper collided. In addition, vibration of the driving chair was generated at the same time as the collision, and the number of the sleeper strikes is displayed on the simulator exercise screen. Owing to the scattering of railway ballast protruding from the sleepers, which had a serious effect on the safety of the vehicle, the gravel bouncing effect of the tamping unit was applied.

The effectiveness of geosynthetic reinforcement, tamping, and stoneblowing of railtrack ballast beds under dynamic loading: DEM analysis

  • Lobo-Guerrero, Sebastian;Vallejo, Luis E.
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.161-176
    • /
    • 2010
  • Discrete Element Method (DEM) simulations were developed to investigate the effectiveness of geosynthetic reinforcement and the effectiveness of maintenance techniques performed on a simulated ballast bed subjected to dynamic loading. The results from four samples subjected each one to a total of 425 load cycles are presented: one unreinforced and unmaintained sample, one unmaintained but reinforced sample, one unreinforced sample subjected to maintenance in the form of stoneblowing after 200 load cycles, and one unreinforced sample subjected to maintenance in the form of tamping after 200 load cycles. The obtained values of permanent deformation as a function of the applied number of load cycles for the four cases are presented together allowing a comparison of the effectiveness of each technique. Moreover, snapshots of the simulated track sections are presented at different moments of the simulations. The simulations indicated that the geosynthetic reinforcement may not be beneficial for the analyzed case while stoneblowing was the most effective maintenance technique.

A Comparative Study on the Effect of Tamping Materials on the Impact Efficiency at Blasting Work (발파작업 시 충전매질에 따른 발파효과 비교 연구)

  • Bae, Sang-Soo;Han, Woo-Jin;Jang, Seung-Yup;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • This study simulated the shock wave propagation through the tamping material between explosives and hole wall at blasting works and verified the effect of tamping materials. The Arbitrary Lagrangian-Eulerian(ALE) method was selected to model the mixture of solid (Lagrangian) and fluid (Eulerian). The time series analysis was carried out during blasting process time. Explosives and tamping materials (air or water) were modeled with finite element mesh and the hole wall was assumed as a rigid body that can determine the propagation velocity and shock force hitting the hole wall from starting point (explosives). The numerical simulation results show that the propagation velocity and shock force in case of water were larger than those in case of air. In addition, the real site at blasting work was modeled and simulated. The rock was treated as elasto-plastic material. The results demonstrate that the instantaneous shock force was larger and the demolished block size was smaller in water than in air. On the contrary, the impact in the back side of explosives hole was smaller in water, because considerable amount of shock energy was used to demolish the rock, but the propagation of compression through solid becomes smaller due to the damping effect by rock demolition. Therefore, It can be proven that the water as the tamping media was more profitable than air.

A Fundamental Study on the Properties of High-Fluidity Concrete Using Viscosity Agent - Properties of Hardened Concrete - (증점제를 이용한 고유동콘크리트의 특성에 관한 기초적 연구 -경화상태의 특성-)

  • 김기철;박상준;조병영;윤기원;최응규;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.198-201
    • /
    • 1996
  • The purpose of this study is to analyze the properties of high fluidity concrete using the viscosity agent of a cellulose system with W/C of 35~50% in hardened state. It is proven that properties of high fluidity concrete in hardened state is nearly the same with normal concrete in the same W/C and no strength difference by tamping method do not appeared. Therefore, no tamping method is thought to be reguired in high fluidity concrete.

  • PDF

A study on the mathematical model of the long-term track tamping scheduling problem (궤도 다짐작업의 장기 일정계획문제에 관한 수리적 모형 고찰)

  • Oh Seog- Moon;Lee Ji-Ha;Park Bum Hwan;Lee Hee-up;Hong Soon-Heum
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1130-1137
    • /
    • 2005
  • This paper addresses the mathematical model of the long-term track tamping scheduling problem in the railway system. The proposed model is analyzed in problem size, then three solution approaches (relaxation, decomposition, and heuristic) are presented at the sketch level.

  • PDF

Improving the Residual Stress Characteristics of the Metal Surface by Nd:YAG Laser Shock Peening (Nd:YAG 레이저 충격 피닝에 의한 금속표면의 잔류응력 특성 개선)

  • Yang, Se-Young;Choi, Seong-Dae;Jun, Jea-Mok;Gong, Byeong-Chae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.539-547
    • /
    • 2010
  • Laser shock peening is useful to improve fatigue characteristic of multiple number of metals and alloys. This process induces a compressive residual stress on the metal surface, and when tensile load is applied, growth of crack is delayed and which changes the characteristic of the metal surface. It is an innovative surface treatment technique for strengthening metals. Specimens of SM45C are used in this study. The effect of an inertial tamping layer on the residual stress field using laser shock peening setup and Nd:YAG laser power is evaluated. Residual stress distribution measured by X-ray diffraction. As a result of this study it can be presented that following condition of Nd:YAG laser power and inertial tamping layer parameters, compressive residual stress is generated on the surface of the SM45C. Results to experimental data indicate that laser shock peening has great potential as a means of improving the mechanical performance of the metal surface.

Influence of Sampling and Preparation Method on Stress-Strain Behavior of Weathered Granite Soils (채취방법과 성형방법이 화강 풍화토의 응력-변형률 거동에 미치는 영향)

  • Cho, Wan-Jei
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.55-64
    • /
    • 2010
  • Since various weathered soils are encountered in many domestic construction sites, it is necessary to estimate characteristics of natural weathered soils. However, the remolded sample of weathered soils are commonly used to estimate their characteristics because it is very difficult to sample weathered soils in undisturbed states. However, it is well known that the behavior of remolded sample is different from that of the undisturbed sample particularly in the dynamic response, because the particle structure of undisturbed sample maintains its original structure from the mother rock. Thus, to evaluate the influence of sampling method and preparation method on stress-strain behavior, the resonant column tests were performed on the block, tube samples, remolded samples with static compression and remolded samples with tamping of the weathered granite soils. The shear modulus of the remolded sample with tamping is larger than the other samples presumably due to the high tamping pressure enough to induce particle breakage. The tube samples show larger damping ratios than other samples. Furthermore, one-dimensional ground response analysis was performed to compare the results qualitatively.